MULTIPLE VIEW CAMERA CALIBRATION FOR LOCALIZATION

Peter B. L. Meijer

Christian Leistner

Anthony Martiniére

NXP Semiconductors Inst. for Computer Graphics and Vision Ecole Polytechnique
High Tech Campus 31 Graz University of Technology University of Nice
5656 AE Eindhoven A-8010 Graz 06903 Sophia Antipolis
The Netherlands Austria France
ABSTRACT and thereby save power in wireless transmissions across local

The recent development of distributed smart camera networks
allows for automated multiple view processing. Quick and
easy calibration of uncalibrated multiple camera setups is im-
portant for practical uses of such systems by non-experts and
in temporary setups. In this paper we discuss options for cali-
bration, illustrated with a basic two-camera setup where each
camera is a smart camera mote with a highly parallel SIMD
processor and an 8051 microcontroller. In order to accom-
modate arbitrary (lens) distortion, perspective mapping and
transforms for which no analytic inverse is known, we pro-
pose the use of neural networks to map projective grid space
back to Euclidean space for use in 3D localization and 3D
view interpretation.

Index Terms— camera calibration, multiview, sensor net-
works, neural networks

1. INTRODUCTION

The cost of cameras and wireless networking is coming down
to a level where ubiquitous use of cameras as sensors in an
ambient intelligence context is economically feasible. In prin-
ciple this allows for many applications in surveillance and
smart environments [1, 2]. Unfortunately, the image process-
ing needed behind the cameras to make good use of the result-
ing multiple overlapping camera views has until now lagged
far behind, both in terms of required computing resources
(high GOPS and low power for real-time use) and in terms
of proven robust algorithms for extracting meaningful infor-
mation about the physical 3D reality being monitored - for
instance to allow for quickly detecting life-threatening events
that require a cascade of follow-up actions.

In recent years, highly parallel SIMD-based (Single In-
struction Multiple Data) processor architectures have been
shown to allow for low-power high performance pixel pro-
cessing units that offer a power-efficiency that lies many or-
ders of magnitude beyond that of a typical high-end PC, and at
a small form factor [3]. In combination with a camera sensor,
these smart camera motes do most image processing close to
the image sensor in order to save communication bandwidth

1-4244-1354-0/07/$25.00 ©2007 IEEE

wireless networks. Low-power is an important practical re-
quirement for the ubiquitous application of distributed cam-
era networks. However, much of the energy for short dis-
tance transmission of typical live video streams is dissipated
in the DA converter of the transmitter, such that high band-
width video links should be avoided [3, 4]. Key to the appli-
cation of any such systems in real-life situations remains the
calibration or self-calibration of the multiple camera setups.

Complete spatio-temporal self-calibration would be most
attractive in maintaining large camera networks, but the prob-
lem of fully autonomous calibration under few constraints has
not yet been solved. Lee and Aghajan [5] employed Oppor-
tunistic Target Observations in their network of smart cameras
to perform self-localization, but this often yields relatively
high error rates due to the significant view-dependent vari-
ations in appearance of the target objects. In situations where
self-calibration is not practical or feasible, a simple point-
by-point recording of correspondences in mapping Euclidean
space locations to associated projective grid locations (loca-
tions within the camera views) still allows for an approximate
inverse mapping from projective grid locations back to physi-
cal locations in Euclidean space. This can be good enough for
many applications in home entertainment and smart environ-
ments, and it is the approach taken in this paper. Simple low-
cost LEDs can be applied as calibration points. A related ap-
proach has also been developed by Svoboda [6]. The possibil-
ity of using blinking lights such as LEDs to self-localize cam-
eras has been investigated by Taylor and Shirmohammadi [7].
Note that the above inverse mapping as derived from point-to-
point correspondences allows for an explicit 3D localization
of points that is usually avoided in multiple view interpolation
(view rendering) based on the implicit effects of 3D space [8].
Yet an explicit 3D localization is often needed for high-level
scene interpretation relating to objects and events in the phys-
ical world [9].

The main requirements for good results are that the
recorded points span the areas of overlap in camera views,
and that the number of points is at least as large as the num-
ber of unknown parameters in the inverse mapping model.

Many mathematical mapping models can offer adequate in-
terpolation accuracy and numerical stability, but extrapolation
tends to be much more risky. Spanning the areas of overlap in
the viewing space of the cameras avoids the need for model
extrapolation. For numerically stable outcomes it is usually
also advisable to have at least a few times more measurements
than unknowns to solve for, in a trade-off with measurement
effort. Consequently, it is important to limit the number of un-
knowns by using inverse mapping models with relatively few
parameters. We applied artificial neural networks to obtain
mapping models, based on the earlier work of Meijer [10].
A related approach using neural networks for camera calibra-
tion on standard PCs was proposed by Mendonga et al. [11],
although at risk of overfitting they seem to have used more
unknowns than measurements.

Calibration based on basic point-by-point correspondences
forms the basis for a more general dynamic 3D location
tracking of multiple feature points for multiple objects in a
view, which further requires robust treatment of partial oc-
clusion situations, disambiguation of matching feature points
and other view analysis issues that lie beyond the scope of
the current paper. This paper will only illustrate the methods
by means of a basic 2D to 2D mapping with two cameras,
but the very same methods and tools are readily applicable in
3D with two or more cameras, mapping horizontal and ver-
tical pixel positions of all cameras to points in 3D Euclidean
space. Using more than two cameras will generally also lead
to more robust and accurate mapping models, allow for grace-
ful degradation in case of component failure (such as a bro-
ken camera), and can be applied to deal with occlusion effects
where not all cameras see the calibration points.

2. METHODS

A 1-point calibration object in the form an a blinking infrared
LED is used and positioned at a number of measurement lo-
cations. The measurement locations in Euclidean space are
more or less uniformly spread out over the entire shared cam-
era view. This is to avoid extrapolation while ensuring a more
or less uniform accuracy in the inverse mapping that will be
based on these measurement points. The measurement points
need not be equidistant nor lie on a grid, because their spatial
distribution only serves to control the accuracy of the inverse
mapping over the region of interest by weakly anchoring the
mapping to the measurement points, for instance through a
minimized error in a least squares sense. Automatic back-
ground subtraction is performed in real-time by the Xetal
SIMD processor, along with determination of the locations
of the measurement points. The 8051 microcontroller host
handles the low-bandwidth communication in the camera net-
work and performs inverse model evaluation and result I/O.
In general one can only mathematically invert projective
mappings under many idealizing assumptions, to avoid that
the mathematical analyses become intractable. Moreover,

in many cases the various non-idealities of the camera net-
work are not even known in advance, especially if camera
network components from multiple vendors are applied and
swapped in realistic ubiquitous ambient intelligence scenar-
ios. Therefore, we will instead use general approximation
techniques that avoid the need for application-specific mathe-
matical analyses while allowing for arbitrary (lens) distortion,
perspective mapping effects and even transforms for which no
closed-form analytic inverse exists. Artificial neural networks
with training through optimization form one general class of
approximation techniques that have been found to work in a
wide variety of applications, and we decided to apply these
here for calibration purposes in obtaining an inverse nonlinear
mapping from projective grid space back to Euclidean space.
A related neural network based camera calibration approach
was also pioneered by Mendonga et al. [11].

To represent the inverse mapping, we used standard mul-
tilayer perception networks. It has been proven that these
feedforward neural networks can arbitrarily closely approx-
imate any nonlinear multivariate function, although in prac-
tice one seeks a trade-off with model complexity and numer-
ical robustness for a still modest number of measurements.
This class of networks is a special case of the generalized dy-
namic neural networks developed by Meijer for behavioural
modelling in the time and frequency domain, and the current
static mapping was obtained using the same software [10].
In the future, our more general class of dynamic neural net-
works can be applied to spatio-temporal calibration, to auto-
matically account for network latencies in a distributed smart
camera network, to compensate for imperfect timing calibra-
tion among the cameras in such the network, to compensate
for intrinsic camera capture time shifts as with CMOS rolling
shutter cameras, and to model and track time dependent be-
haviour of physical objects and view signatures observed in
(i.e., extracted from) the camera views.

For 2D localization in Euclidean space based on an epipo-
lar plane using two cameras, one has to relate the horizontal
pixel position in each of the two camera views to the corre-
sponding two Euclidean coordinate values. A neural network
with two inputs and two outputs can accommodate this, and
using a 3-layer network with a small number of nonlinear neu-
rons in the middle ’hidden” (i.e., non-input, non-output) layer
allows for modelling nonlinear dependencies that may include
nonlinear interaction terms. A 4-layer network with two hid-
den layers may be considered in case of more complicated
“nested” mapping dependencies, but this is typically a second
choice, to be applied only if 3-layer networks of modest size
do not suffice (at the expense of efficiency and hence prac-
tical value, 3-layer networks always suffice if an arbitrarily
large number of neurons in the hidden layer is allowed, while
neural networks with more than 4 layers are rarely needed).

Our neural network based modelling software can auto-
matically generate simulation models in a variety of program-
ming and simulation languages, and in this application we

used the automatically generated C code mapping models on
the smart camera motes for a “live” mapping of projective
grid space back to Euclidean space. For this purpose, the C
code mapping models are compiled for the 8051 microcon-
troller, for subsequent evaluation on one or more of the 8051
smart camera cores. The image coordinates obtained in mul-
tiple camera views are communicated among the smart cam-
eras, as needed for actual evaluation of the neural network
mapping functions on the distributed smart camera network
in operation. This has been tested to work correctly on the
physical setup, and the artificial neural networks thus form
the “’brains” of the smart cameras in mapping projective grid
space back to Euclidean space.

2.1. Neural Network Equations

The neural networks used in this paper are defined in this sec-
tion. A detailed motivation for the various specific choices
can be found in [10]. Any time-dependent terms used for
modelling timing effects through differential equations will
be discarded for the static calibration modelling purposes of
this paper (but are applicable to the more general case of
spatio-temporal calibration). As a result, the neural networks
reduce to conventional multilayer perceptron networks. Lay-
ers are counted starting with the input layer as layer 0, such
that a network with output layer K involves a total of K + 1
layers. Layer k by definition contains Ny neurons. A vector
notation with bold font is used to denote information on all
neurons in a particular layer. A neural network has a vector
of inputs 2(?) and a vector of outputs 2 (%),

The equation for the output, or excitation, y; of one par-
ticular neuron ¢ in layer k£ > 0 is given by

dzyik dy; (ik)
ik 1,0 ik Ty, ik = iky 04 1
ik~ + Tk dt + yir = F ' (sik,0i) (1)

where F (%) is a (generally nonlinear) function having an op-
tional transition parameter d;;. The timing parameters Ty ;,
and 7o ;;, will be kept at zero for the static modelling pur-
poses in this paper. The weighted sum s;;, of results from the
preceding layer is further defined as

1

dy,_
Wik - Yp_1 — Oir + Vir - #

Ng_1 Ni_1

dy;k—
Z WijkYj,k—1 — Oir + Z Vijk — 5, yj’ ! (2)

Sik

for k > 1, involving weighting parameters w;;; and v;jx, an
offset parameter 6;;, and similarly for the neuron layer k£ = 1

(0)

connected to the network inputs z;

(0)
s = wi-2® — 0y + vip - d:fi—t
(0)
= szgoﬂf —0; 0+ZUUO 3)

which is analogous to having a dummy neuron layer £k = 0

. . 0 .
with enforced neuron j outputs y; 0 = 2! , Or 1n vector nota-

J
tion y, = (O, All timing parameters v;;;, and v;;,0 are also
kept at zero for the static modelling purposes in this paper.
Finally, to allow for arbitrary network output ranges in
case of bounded functions () a linear scaling transforma-
tion is added to the output stage

%(K) = o; yix + Bi 4

yielding a network output vector (%),

The above function F(#*) is for neuron i in layer k ap-
plied to the weighted sum s;;, of neuron outputs y; x—1 in the
preceding layer £ — 1. The optional transition parameter §;,
may be used to set an appropriate scale of change in qualita-
tive transitions in function behaviour, as is common to semi-
conductor device modelling, but for the current application a
d0;,-independent classic logistic function suffices,

1

1+e —Sik

Again referring to [10], it can be shown that the above
neural network equations can arbitrarily closely approximate
any multivariate static function. Under very weak conditions,
this approximation property applies even when the nonlinear
F(ik) are the same for all neurons, as with the use of the lo-
gistic function, while requiring only three network layers for
static models.

>

Fi(sik) (%)

3. EXPERIMENTS

In this section we present some experiments on our smart
camera set-up, with an emphasis on some of the unique fea-
tures of the SIMD architecture. As already indicated, the LED
is detected using a simple background model of the form

Bt(x7y) = aFt(way) + (1 - a)Btfl('x:y)a (6)

where B; 1 is the last stored background image and F; the
current frame.

With our Xetal SIMD processor, each image line is com-
puted in just two cycles, with each VGA line, consisting of
640 pixels, handled as 2 times 320 pixels. The software ab-
stracts away from such underlying image wrapping issues,
and represents it by a single instruction, as shown in the soft-
ware listing 1, line 12.

Listing 1. SIMD background model line
while (++current_row < MAX_ROWS)
{

// Fetch yuv image_row from sensor
yuv = sensor_yuv();

1
2
3
4
5
6 if (BackgroundModelStored())
7 {

8 // Line of background {t-1} stored in memory
9 out [0] = dpram_get ();

0

11 // Computing line of New background {t}
12 out [0] = yuv[0]*alpha + (l-alpha)*out[0];

14 WriteToMemDisplay (out, mem, out,0);

17| }

Each camera has to locate the infrared LED in the projec-
tive space. The SIMD processor computes for each frame the
row and column where the LED is detected (see listing 2).

Listing 2. SIMD IR-LED detection
while (++current_row < MAX_ROWS)
{

1
2
3 ...
4 // Detection of new moving objects

5 temp = abs(out[0]-yuv([0]) > T 2?2 1: 0O;
6 temp = NoiseReduction (temp5x5) ;

7

8

// Detection LED line and column

9 if (temp > 0) Detected_Row = current_row;
10 for (i=0 ; i< MAX_COLS; i++)

11 {

12 if (FIRST_PIXEL > 0) Detected_Col = i;
13 temp = temp.neigh(-1);

14 }

16| }
17| 1f (Detected_Row > 0) Row
18| if (Detected_Col > 0) Col

Detected_Row;
Detected_Col;

Note that by setting the threshold T (listing 2 line 5) very
high, e.g. at 80, and using the high infrared sensitivity of the
optical sensor, it is possible to assume the LED as the only
“non-background” object in the scene.

As a further precaution, a noise reduction filter is applied
to remove for example spurious reflections present in front of
the cameras. This filter is a 5 x 5 filter, applied to a binary
image. It simply counts the number of bright pixels detected
in the 5 x 5 neighbourhood of the current pixel. If this number
is not high enough, we heuristically consider this to be noise
in the scene or internal to the sensor (for example due to a low
luminosity), and we remove the current pixel from the set of
changing pixels detected.

In our case we exploit the high parallellism of the SIMD
processor in first detecting the line showing the LED, and we
further use the Global Controller (internal to the SIMD pro-
cessor) to compute the pixel column. The Global Controller
can only take into account the value of one pixel, which is
why we have to left-shift the detected line in order to analyze
the right neighbouring pixel (see listing 2, lines 12 and 13).
The advantage is that we need to perform the column detec-
tion only once per frame, as soon as the image line showing

the LED is correctly detected.

As a result, all the LED detection work is done by the
SIMD processor. The final neural network calibration step
is readily implemented on the 8051 microcontroller, which
allows for using standard ANSI C code.

3.1. Multiple Camera Setup

Our improvised table-top multiple camera setup, illustrative
for a quick temporary setup, is shown by the photograph in
Fig. 1. For the example discussed in this paper we only used
two of the three cameras, as illustrated in Fig. 2.

Fig. 1. Photograph of the multiple camera setup, here with
three smart cameras at the corners of the table, and with a
blinking infrared LED near the center of the table.

y \

Blinking L
IR-LED __. \

Camera 1

Camera 2

Fig. 2. Schematic of multiple camera setup.

3.2. Results

Through measurements we obtained integer values ¢1,, and
19, for the horizontal locations in the two camera views as
a function of the physical locations (%, ¥,) in Euclidean
space, where m represents the measurement counter. This
can be described with an unknown vector function F'

(i) =7(5r)

and the aim of the neural network modelling is therefore to
approximate the (also unknown, but assumedly existing) in-
verse vector function F~ 1,

()= (1)
Ym 12m

via a neural network model. In reality, we will only find
an approximate inverse vector function F~1, and the result-
ing approximate locations in Euclidean space will be labelled
(Zm; Gm)-

Apart from analyzing the modelling error at measure-
ment points that were included in the neural network learning
phase, several measurement points were deliberately omitted
from the learning phase in order to obtain further indications
for the generalization properties of the resulting neural net-
work by afterward evaluating the neural model errors at these
excluded measurement points.

Figs. 3 (small dots) and 4 illustrate the grid of Euclidean
measurement locations and the measured projective grid lo-
cations, respectively. The latter grid clearly appears distorted
as compared to the rectangular Euclidean grid, as a conse-
quence of the relatively small and varying distance to the two
cameras.

Various neural network topologies were tried, for instance
including networks that had two hidden layers between the
two outputs and two outputs, using a 2-2-2-2 network topol-
ogy, but good accuracy was often quickly obtained using neu-
ral networks with only 3 neurons in a single hidden layer and
2 neurons in the output layer, that is, using a 2-3-2 network
topology for a 5-neuron model as shown in Fig. 5, and us-
ing the standard logistic function for the neuron nonlinearity.
Best models were selected afterward. Only one of the suc-
cessful 5-neuron models is further discussed in this paper, for
illustration purposes.

The big dots in Fig. 3 show how the selected 5-neuron
network maps the measured projective grid points back to
Euclidean space. The maximum model error for the recon-
structed (Z,,Jm) over the entire projective grid (415, t2m)
was 1.35%. This was considered comparable to the manual
positioning errors in moving the blinking infrared LED over
the Euclidean grid. Note that although a regular grid in Eu-
clidean space was here used for convenience and for illustra-
tion purposes, this is not a requirement for the applied meth-
ods.

Fig. 3. Euclidean locations (%,), in cm, obtained from
the neural network model using the measured projective grid
locations for input (big dots). For reference, the original
Euclidean measurement locations (%, ym) are included as
small dots.

Fig. 4. Measured projective grid locations (%1, i2m) (inte-
ger positions) in the two VGA camera views, obtained with a
rectangular Euclidean measurement grid.

3D plots of the neural mapping functions are shown in the
Appendix, Figs. 6 (first output Z,,,) and 7 (second output §,,),
along with the automatically generated C code in listing 3,
where minor formatting changes were applied for use in this

paper.

With these satisfactory results, we compiled the automat-
ically generated standard C code model functions for use on
the 8051. The setup supports the Zigbee protocol to commu-
nicate 41, and io,, for live function evaluation on one of the
smart cameras, as needed to display the calculated Euclidean
locations (Z, Jm) on a remote PC.

Fig. 5. 2-3-2 neural network with 5 neurons.

4. DISCUSSION

The results show that a calibration based on a more or less ar-
bitrary set of individual measurement points is feasible with-
out detailed knowledge about the camera setup or the camera
properties. Application-specific mathematical analyses can
be completely avoided. Moreover, the approach can easily
account for various non-idealities in the system, such as the
often unknown lens distortion. Even with complete knowl-
edge of the system, mathematical analyses would often be
too time-consuming for practical purposes, or turn out to be
intractable.

In principle, a completely self-contained auto-calibration
(self-calibration) without user intervention would appear still
more elegant, but this puts additional requirements to the
setup, such as the need to have cameras see other cameras.
With typical camera viewing angles of only sixty degrees or
less (in our case 48 degrees), this is not always practical or at-
tractive, while the least obtrusive camera locations in a room
may also occlude their appearance to the other cameras in that
room. An elementary manual calibration procedure similar to
the one outlined in this paper may in such cases still be nec-
essary.

5. CONCLUSION AND FUTURE WORK

In this paper we showed how a simple 1-point calibration pro-
tocol in combination with standard neural network modelling
techniques can be applied to obtain a model that maps a pro-
jective grid space back to Euclidean space for use in 3D local-
ization and 3D view interpretation. The methods were illus-
trated by means of a 2D localization mapping with two cam-
eras, but are readily applied to the more general case. Results
proved to be highly accurate, and will form a basis for the
future development of general dynamic 3D location tracking
of multiple feature points for multiple objects in each cam-
era view, with the added possibility, through our generalized

dynamic neural network formalism, of performing a general
spatio-temporal calibration that accounts for a wide variety of
timing effects.

6. ACKNOWLEDGEMENTS

We thank Alexander Danilin for his help in setting up the
background subtraction and calibration measurement code.

7. REFERENCES

[1] C. H. Lin, W. Wolf, A. Dixon, X. Koutsoukos, and
J. Sztipanovits, “Design and implementation of ubiq-
uitous smart cameras,” in SUTC ’06: Proceedings
of the IEEE International Conference on Sensor Net-
works, Ubiquitous, and Trustworthy Computing -Vol 1
(SUTC’06), Washington, DC, USA, 2006, pp. 32-39,
IEEE Computer Society.

[2] M. Bramberger, A. Doblander, A. Maier, B. Rinner, and
H. Schwabach, “Distributed embedded smart cameras
for surveillance applications,” Computer, vol. 39, no. 2,
pp- 68, 2006.

[3] R. Kleihorst, B. Schueler, A. Danilin, and M. Heijligers,
“Smart camera mote with high performance vision sys-
tem,” in Workshop on Distributed Smart Cameras (DSC
2006), Boulder, CO, USA, June 2006.

[4] M. Bhardwaj, A. Chandrakasan, and T. Garnett, “Upper
bounds on the lifetime of sensor networks,” in ICC -
Proceedings of the IEEE International Conference on
Communications (ICC), 2001, pp. 785 — 790.

[5] H. Lee and H. Aghajan, “Collaborative node localiza-
tion in surveillance networks using opportunistic target
observations,” in ACM Multimedia Workshop On Video
Surveillance and Sensor Networks (VSSN), 2006.

[6] T. Svoboda, D. Martinec, and T. Pajdla, “A convenient
multi-camera self-calibration for virtual environments,”
PRESENCE: Teleoperators and Virtual Environments,
vol. 14, no. 4, pp. 407-422, August 2005.

[7] C. J. Taylor and B. Shirmohammadi, “Self localiz-
ing smart camera networks and their applications to 3d
modeling,” in Workshop on Distributed Smart Cameras
(DSC 2006), Boulder, CO, USA, June 2006.

[8] Y. Ito and H. Saito, “Free-viewpoint image synthe-
sis from multiple-view images taken with uncalibrated
moving cameras,” in Proc. IEEE Int. Conf. Image Pro-
cessing (ICIP 2005), Genova, Italy, 2005, vol. 3, pp. 29—
32.

[9] H. Aghajan, J. Augusto, C. Wu, P. McCullagh, and

J. Walkden, “Distributed vision-based accident man-
agement for assisted living,” in Proceedings Int. Conf.
on Smart homes and health Telematics (ICOST), Nara,
Japan, June 2007.

[10] P.B.L. Meijer, Neural Network Applications in Device

and Circuit Modelling for Circuit Simulation, Ph.D. the-
sis, Eindhoven University of Technology, 1996.

[11] M. Mendonga, I.N. da Silva, and J.E.C. Castanho,

“Camera calibration using neural networks,” Journal
of WSCG - poster abstract at 10-th Int. Conf. Central
Europe on Computer Graphics, Visualization and Com-
puter Vision, (WSCG 2002), vol. 10, no. 1-3, February
2002.

8. APPENDIX

Listing 3. Generated neural model code (reformatted),
as run on the smart cameras (8051 microcontroller)

#include <math.h>

double f1l (double s) {

}

void netO(double inl],

return(1.0 / (1.0 + exp(-s)));

double out[]) {
double net011n0, net0llnl, net0lln2,
net012n0, net01l2nl;

net011n0 =
£1(-3.8127875846276100e-03 * in[0]
-4.2295785912067137e-04 * in[1
+3.1665623494486885e+00) ;

net0llnl =
£1(-9.1588388556664759%-03 * in[0]
+1.2290676953540203e-04 * in[1l
+9.0614964706215173e-01) ;

net011ln2 =
£f1(-3.3711715680603675e-03 * in[0]
+1.2160470931375164e-03 * in[1l
+1.9435120601542750e+00) ;

net012n0 =
£1(+4.3930104113043384e+00 * net011n0
-6.5139698438269900e-01 * net0llnl
-7.0793079196186302e+00 * net01lln2
-1.2824132753249337e-01) ;

net012nl =
£1(-1.0007183969110965e+01 * net011n0
-2.7076964131170778e-01 * net0llnl
+6.7926874876093679e+00 * net0lln2
+5.4240606874043866e+00) ;

out [0] = -3.3278043362310491e+01
+7.0023061720757732e+02 * net012n0;

out[1l] = -4.8864233148180318e+02
+6.0016425300491528e+02 * net01l2nl;

Fig. 6. &,,,, in cm, modelled as a function of (i1, %2).

Fig. 7. §,,, in cm, modelled as a function of (i1, i2m)-

