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Fast and Smooth Highly Nonlinear
Multidimensional Table Models
for Device Modeling

PETER B. L. MEIJER

Abstract —This paper presents a general scheme for the construction of
device models for circuit simulators. Two general n-dimensional C! table
models have been constructed under this scheme. Each table model can
automatically reconstruct the exact behavior of the dc current expressions
of two basic physical device models, namely the Ebers—-Moll bipolar
transistor model and the GLASMOST MOSFET model. Also, the evalua-
tion times of the three-dimensional table model implementations are less
than those of advanced physical CAD device models. The table models are
generally very accurate and have negligible model development time. Both
table models have been implemented in the SPICE-like circuit simulator
PHILPAC.

I. INTRODUCTION

HE QUALITY of device models is decisive for the

attainable quality in the prediction and verification of
the circuit behavior for a given electronic network. Device
models are used to represent, for example, the terminal
currents and charges of transistors as a function of the
terminal voltages. The requirements for a good model in a
circuit simulation environment are quite stringent. The
models must obviously be accurate, because they limit the
attainable simulation accuracy. Additional model restric-
tions may be posed by the simulation algorithms, such as
the Newton-Raphson algorithm and the time integration
scheme: good models are at least continuous as a function
of each of the controlling variables, and preserve mono-
tonicity in the device behavior. Usually the continuity of
the first partial derivatives is also required, causing C!
smoothness. Without these numerical properties, the simu-
lation may take much longer to process, or it may even
fail. Other restrictions follow from the charge and energy
conservation laws. One should also pay attention to the
model evaluation times, because state-of-the-art device
models often cause a significant fraction of the simulation
time to be spent in the evaluation of model expressions. It
should be noted, however, that this fraction depends on
many factors, among which are the circuit size, the model
complexity, the simulation algorithms, and the degree of
parallelism exploited.
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Physical modeling has for many years been the most
attractive approach to semiconductor device modeling for
circuit simulation. It was possible to obtain very compact
models by exploitation of knowledge about the underlying
physical principles. Only a few relatively independent pa-
rameters were needed to arrive at a sufficiently accurate
result. The parameters had a clear physical meaning, which
is important for the feedback of simulation results to
process control and optimization. Model development
times were still acceptable, because in the relatively large
devices one could neglect a number of physical side-
effects, without much loss in accuracy and with a gain in
simplicity. In particular one could, mainly from geometri-
cal considerations, reduce the analysis of device operation
to the analysis of a number of one-dimensional phenom-
ena.

Unfortunately, this situation is now gradually deteriorat-
ing. One has to include more second-order effects for the
very small devices in VLSI technology. The assumption of
a one-dimensional current channel in transistors becomes
increasingly inaccurate, due to nonuniform electrical fields
and doping levels near the boundaries of the channel.
Geometrical boundary effects in general become more
influential, because the ratio of surface to volume increases
for smaller devices. One is forced to perform very compli-
cated multidimensional analyses, often resulting in compli-
cated model expressions. Even the combination of the
results of several one-dimensional analyses into a C! and,
if relevant, monotonic multidimensional description be-
comes a nontrivial task. (In this paper, a multidimensional
function is considered monotonic if it is monotonic as a
function of any one of its controlling variables, keeping the
remaining variables at any set of fixed values.) Further-
more, surface physics, e.g., for surface states and mobility
degradation, is not as well developed as bulk physics. This
means that the required boundary conditions in the analy-
ses may not even be known. The most advanced physical
models now use a significant number of largely empirical
fit-parameters, and sometimes unphysical values are as-
signed to the physical parameters, because they have to
account for effects that were not properly incorporated in
the model. This may also reduce the independence of the
parameters. Because of the increased model and modeling
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complexity, both the model evaluation time during circuit
simulation and the model development time increase.

A growing interest in the use of table models instead of
physical models has been the consequence. The table mod-
els approximate the device behavior, using a finite number
of table points, which can be obtained from measurements
or device simulations (or from existing physical models, as
is done in this paper for testing purposes). A number of
recent papers on the application of multidimensional table
models for semiconductor device modeling can be found in
the references [1]-[4], [6][9], [12], [13], [15]-[18], [20], [21].
Table models have the advantage of a very short model
development time, and it is often possible to guarantee
some important numerical properties beforehand, such as
C!' smoothness and monotonicity. Piecewise-polynomial
table models, e.g., tensor products of B-splines [4], [5], [8],
[17], [21], are very popular. For B-spline tensor products,
monotonicity is guaranteed when using a set of monotonic
B-spline coefficients [5], [8]. One may simply take table
values as a set of coefficients, which leads to the so-called
variation diminishing (VD) splines. However, high accu-
racy in multidimensional piecewise-polynomial models can
be obtained only by using many table points. In particular,
the highly nonlinear exponential characteristics of bipolar
and MOS transistors cannot be modeled without using
excessive numbers of table points. Ad hoc hybrid combi-
nations of piecewise-polynomial table models and physical
models can be and have been made to deal with this
problem, but only at the expense of decreasing generality
and increasing model development time, sometimes sacri-
ficing some smoothness guarantees as well. Table models,
being black-box models, also have the disadvantage that
different parameters generally do not represent different
physical phenomena, as each parameter represents an un-
known mix of underlying physical effects. This impedes
the interpretation of model characteristics, and hence, the
feedback to technology. However, this argument is some-
what weakened by the fact that today the physical models
also incorporate many empirical parameters.

This paper describes a general hybrid approach to auto-
matic device modeling. The hybrid approach combines
several advantages of physical modeling and piecewise-
polynomial table modeling, while it avoids several of their
disadvantages. Modeling the (partly) exponential behavior
of many semiconductor device characteristics requires a
more general approach than is found in piecewise-poly-
nomial table models. The local expressions of a piecewise
model should reflect the qualitative behavior of the partic-
ular region in which the model piece lies. For example, a
device characteristic that behaves (locally) as a function
f(x)=e%, a>1, is best modeled (locally) by a simple
function that can express this behavior exactly, in order to
obtain an accurate representation that requires few table
points. A piecewise-polynomial description would require
a high density of table points to accurately model the same
behavior. Accurate piecewise-polynomial modeling of
highly nonlinear multidimensional behavior such as
f(x, x,) =e“ 1+ e%*2 g, a,>1, soon becomes imprac-
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tical. Therefore, the basic strategy followed in this paper is
to apply general physics-based heuristics to select an ap-
propriate one-dimensional local description. The
local descriptions are then combined into a C! multidi-
mensional model. Transitions in qualitative behavior are
detected and processed automatically, guided by the
heuristics. In a recent paper [15], a very general approach
to such an automatic construction of smooth and highly
nonlinear multidimensional table models was presented.
High model accuracy was obtained using few table points.
The MOSFET table model example was C! and mono-
tonic. However, table preprocessing was hampered by the
infinite number of so-called virtual table points, causing
the model evaluation times to be rather long on sequential
computers. This paper presents a scheme without virtual
table points. Extensive table preprocessing now becomes
possible, by shifting the application of the heuristics to a
preprocessing phase. This gives a dramatic decrease in the
model evaluation times during circuit simulation, at the
expense of an acceptable increase in memory demands
after preprocessing (for choosing functions and calculating
coefficients). What is important is that the number of
measurements or device simulations, needed to provide the
data, does not increase. The basic principles stated in [15]
still apply to this paper, only the methods are different.
The slight loss in generality, because not all n-dimensional
behavior is covered (exactly) by the methods of this paper,
appears to be no disadvantage in practice. The behavior of
bipolar transistors as well as MOSFET’s can be repre-
sented very accurately for a suitable choice of the control-
ling variables. The exact reconstruction of the behavior of
the dc current expressions of a basic bipolar transistor
model and a basic MOSFET model, as shown in this
paper, reflects a new view to estimating the general useful-
ness of table models. It also demonstrates the promise of
high accuracy with reasonable amounts of data, when
following the approach described in this paper.

II. METHODS

Let there exist a (generally unknown) C! n-dimensional
function ® (x,,-- -, x,) that exactly describes (part of) the
behavior of a device. The aim is to approximate this
function as closely as possible. In semiconductor device
models, the controlling variables x,,-- -, x, are usually a
set of independent voltages across terminal pairs of an
(n +1)-terminal device. The function ® represents a de-
pendent physical quantity, such as a current or a charge. It
is assumed that the state of a device is determined instan-
taneously by the externally applied controlling variables.
This assumption implies that phase shift effects due to the
nonzero response times of a device are neglected. The
dynamic behavior is then determined solely by the dc
characteristics for currents and the time-derivatives of
equivalent terminal charges [19].

For the construction of a table model, it is convenient to
impose some regularity upon the table structure. There-
fore, given the numbers neN*, N, eN* k=1,---n
and x,; €R with x, ;< - <x, v, k=1,---,n, we
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consider an n-dimensional hyperrectangular grid T'y con-

sisting of points (xy ;, ", X, ; )
I‘Né{(xl,ll’...,xn ,n)|k=1v"""
iy=1,--,NyAXx, ;< -<xk‘Nk}, (2.1)

The grid has a table value F, .. ; €R associated with each
of the grid points (x; ;, ", X, ; ). X ;, is the i;th discrete
grid position in the kth direction.

To avoid cluttering the following text with conditions,
we will not consider the boundaries of the table. The
choice of an extrapolation scheme is a separate problem
lying beyond the scope of this paper. For the same reason,
the value range of indexes in the formulas is not given,
unless there exist relevant restrictions that are not related
to the table boundaries. The type of a variable (real or
integer) should from now on be clear from the context.

Exact table values and exact calculations are assumed,
to distinguish the fundamental theoretical limitations of
the table models from practical limitations due to measure-
ment errors, physical noise in the data and /or finite preci-
sion in the computer representations and operations. So we
have F, ., =@(xy ;. " %, ;)

For the moment, we also assume that we have methods
that are powerful enough to find exact descnptlons along
all gridlines (xy ;" " Xg 14 X0 Xkt 1,1, p° "> X

Exact gridline descrlptlons still give msufﬁcwnt 1nfor-
mation about the behavior elsewhere in hyperspace. For
example, in the case of equidistant gridlines one may add
any (even infinitely differentiable) function:

H(x,, -, x, ]_I sm(

KT Mk ..ﬂ) (2.2)

Xhig+1 ™ Xk

for arbitrary i, and bounded H, without modifying the
behavior along the gridlines in any way. Nevertheless, we
can make a reasonable guess about the relation between
behavior along gridlines and behavior elsewhere. In fact,
we will make two different guesses, both of which turn out
to be correct (exact) for the current expressions of two
basic physical device models, namely the Ebers—Moll bipo-
lar transistor model [10] and the GLASMOST MOSFET
model [19].

It is advantageous to construct local n-dimensional de-
scriptions, to enable accurate modeling of a device charac-
teristic with qualitatively different behavior in neighboring
regions. The local n-dimensional descriptions are
constructed from local one-dimensional descriptions.
The exact behavior of ® along any gridline (x, ;, -,
Xp 1y Xk Xga1,i, " Xmg,) i the interval x, €
[Xg i X, +1] Will, therefore, be denoted by C! functions

603 (x,), giving

‘P(k) ,,(xk,:k) =F ..
&0 (X)) = Fy o (23)

A useful local interpretation of this definition is that any
particular grid point (xy;, ", X, ;) has n associated
functions ¢{*)., (x;), because k =1,---,n. All these func-

v it L iy
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linear weight function I (X e X2 1)
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X1, 00 X X2 i 41 7 X2
Xigy+1 = Xi Xop e T Xag o X3
(xy5, 5 X2.i,) (i, 410 %25, )
xX)—
Fig. 1. Table model 1 principles for n =2, 1=0.

tions interpolate the table value F, _; at this grid point.
The kth function also interpolates the "table value belong-
ing to the next grid point in the kth direction, ie., the
neighboring table point at x,, ,,. The functions ¢*’
drawn in Fig. 1 may help to visualize this interpretation
for n = 2. The other function parts of Fig. 1 are discussed
in a following section.

The transformation of behavior in R along the set of
(piecewise) gridlines into behavior in R” will be denoted
by the grid-operator ¥:

ot (x)) & Flxi . x,

with the requirements that F should at least be C O in the
x, direction at x, , and C! elsewhere. In other words,
discontinuities in the first partial derivative to x, are
allowed only at x; =x, ,. Later on an operator will be
defined that transforms such a piecewise C! F into a
globally C! function. We also wish to preserve the as-
sumedly exact descriptions along the gridlines, so we re-
quire

(2.4)

X )

n

F(xl,il" ..

s X Lip_ o Kk Xk 1ig 0

=0 (x .- (2.5)

Once we have constructed such a ¥, the question arises
what class of functions is reconstructed exactly from exact
gridline descriptions, i.e., which functions @ are eigenfunc-
tions of ¥, fulfilling

{¢'(k) (XA)} =0(x,,--

A function ® that meets this condition needs only the
finite set of exact descriptions along gridlines to obtain the
exact n-dimensional behavior. For 9 to be useful, multidi-
mensional expressions of some basic physical device mod-
els should be eigenfunctions of ¥.

In the following, T denotes a vector of dimension n with
elements 0 or 1, and the summation over 7 from 0 to 1
sums all 2" different combinations. We now consider two
grid-operators, §, and 9,, each fulfilling the conditions on
F mentioned between (2.4) and (2.5). Both operators are
symmetrical in the controlling variables x,,---,x,, and
both involve only n2"~! functions ¢‘*) in a model evalua-
tion, i.e., the number of edges of an n-dimensional hyper-
rectangle.

s Xkt Xk Xkt 0" an")'

 X,)- (2.6)
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2.1. Table Model 1

For x, & [xk.ik’ xk‘ik#—l]: k=1,---, n, the local n-dimen-
sional description is defined by
' { ¢1(1’f-)--‘i,,(xk)} & Fl(xl,- N xn)

1

Z I:(l - n)F:'l+f),~-~,z,,+'r,,

=0

>

+

1 M=

(k)
¢i1+fl,---,ik,1+fk,1,i,(,lk”+fkﬁ,---,i"+-r,,(xk)
k=1

n

-T1

k=1

ne+ (1)

Xrip+1~ Xk )
Xk ig+1 ™ X,y

(2.7)

This expression turns out to be an n-dimensional general-
ization of the two-dimensional Coons surface patch with
linear blending functions, see [11]. It can also be viewed as
a multilinear weighting of nonlinear multidimensional
functions, each of them interpolating (at least) n +1 of the
table points located at the vertices of the hyperrectangle
spanned by x, € [x ;, X, ; .1]- Fig. 1 illustrates this view
for the part of (2.7) that corresponds to n=2, v =0.

2.2. Table Model 2

For x, €{x, ;, x4 ; +1), k=1,---, n, the local n-dimen-
sional description is defined by

772{ 4’55-)--‘1,,(9‘1\»)} & Fy(xy,700,x,)
1 n
A k7
= Z E1+‘rl,--~,i,l+‘r"‘ 1_[ [Tk+(_1) -
=0 k=1
'Wifﬁ')ﬁ‘“'v'kq+Tk-1~ik»ik+1+7k+1»"'»in+7n(xk)]
(2.8)

with weight functions w(*) defined by

Fyroiirtmanr = 902050
k A R St Rl S TS L iy i\ Tk
CERICARIE = - (29)
il,'u,ik,l,ik%—l,iki,],w,i" iy iy
and the conditions
AR S PR U i,,#= Fil,---,i,, (2-10)

to avoid division by zero in (2.9). In practice one may
apply small (insignificant) changes to the table values to
satisfy conditions (2.10). Or else one may redefine the w
for the cases where division by (near-)zero values would
cause problems. However, these modifications will be con-
sidered no further in this paper, because they violate the
exactness assumptions in the theoretical treatment of exact
reconstructability. Table model 2 can be viewed as a
nonlinear weighting, with products of weights w®) or
(1—w'®), of the table values at the vertices of the hyper-
rectangle spanned by the controlling variables x,. Fig. 2
illustrates this view for the part of (2.8) that corresponds to
n=2,1r=0.
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Fig. 2. Table model 2 principles for n =2, 1= 0.

2.3. Eigenfunctions of Table Models 1 and 2

The usefulness of any table model for device modeling
purposes is determined to a large extent by the behavior it
can accurately represent, when using few table points. A
good indication for this is the class of multidimensional
functions that can be expressed exactly. In other words, we
are interested in the eigenfunctions of ¥ satisfying (2.6),
i.e., assuming exact descriptions along the gridlines. In the
following, 0° 2 1:

A set of eigenfunctions of ¥, is given by

n 1 n
Gy(xp, -, x,) 2 Z Z g-ﬁk)(xk)' I_lef (2.11)
k=11=0 i=

with g{* representing any C! function, in which 7 and k
are just indexes to identify different functions. The terms
with 7, =1 may be dropped from (2.11) without loss of
generality. For example, in the two-dimensional case, ex-
pression (2.11) is equivalent to the form

Gl(xl’xZ)

=gi1(x)+ g2(x,) + x283(x1) + x1g4(x2)' (212)

A set of eigenfunctions of ¥, is given by

Galoxay o) & L e kljl [e©(x0]" (213)

with g} being C' functions and c, being constants.
Notice that g lacks the index 7 in the expression for G,.
Therefore, in the two-dimensional case, expression (2.13) is
equivalent to the form

Gy (x4, x,)
=+ g (%)) + gy (xy) + eagi(x1)g2(x,). (2.14)

An outline of the general proofs for the exact recon-
structability of (2.11) and (2.13) is given in the Appendix.

Any multilinear form can be written in the form (2.11)
as well as (2.13), by using linear functions g. Therefore,
piecewise-linear table models are special cases of both
table model 1 and 2, provided the conditions (2.10) are
satisfied in the case of table model 2.

The two table models are also equally powerful in the
sense that model 1 can exactly model some functions that
model 2 cannot, and vice versa. From the definition of ¥,
it is obvious that table model 1 cannot exactly describe
multidimensional products of highly nonlinear functions,
while table model 2 can. On the other hand, it can be
proven by inspection of (2.12) and substitution in (2.9) and
(2.8) that the function f(x,x,)=x,/x,+x,/x, can
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be exactly described by table model 1, but not by table
model 2.

2.4. Smoothing Shell for Table Models 1 and 2

Because the ¢X) are C!, the table models are C! within
the local descriptions at x, €[x, ;, X, ; .1}, k=1,---,n.
Continuity of the two table models at the borders between
neighboring local descriptions is shown by verifying that
forall j=1,---,n:

lim {6, (x)} = lim o (x0)}. (215)

x1x;

iy

Therefore, the table models 1 and 2 are C! models, except
for possible discontinuities in the first partial derivatives at
X, ;, in the x,-directions. Furthermore, by substitution of
X=X for all j# k, it is found that ¥, and 9, leave the
descriptions along gridlines unaltered, the result being one
of the ¢'%). This satisfies condition (2.5). A C! generaliza-
tion of ¥, and ¥, was deliberately avoided to minimize
model evaluation times. It is better to design a smoothing
scheme as a separate shell around the basic table models.
This allows one to keep control of the amount of smooth-
ing required for a specific application. The basic idea
behind this is the following. If, owing to good heuristics, a
C° model for @ is already accurate, including the first
partial derivatives, then additional smoothing will make
little difference, and we may smooth only close to x, ;. If
close enough, then the contribution of the smoothing
scheme to the average model evaluation time becomes
negligible, assuming a more or less uniform distribution of
argument values by which the model implementation is
called. Ideally, a smoothing shell would yield a C 1 model,
while preserving the monotonicity (if present) of the un-
smoothed model and its first partial derivatives. Neighbor-
ing descriptions should be left unaltered if the behavior
across their border is already C?, to avoid distorting accu-
rate or even exact descriptions. Preservation of symmetry
in the controlling variables of the modelling scheme is also
desirable.

A particularly well-behaved smoothing scheme is the
following one. A function F, representing table model 1 or
2, is transformed into a globally C! function F') by an
operator S

SAF(xl,‘ S x,) S FO(x,,-

X)) (2.16)

with

N l—l [l+ Zs(xk’xk.ik’ek.i,,)
k=1 ;

%

im o m ) (217)
4 lim —- lim — .
X b ey axk X T X axk /
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and

S(xk’xk,ik’ek,ik)

2
(x,— xk‘ik+(k,i,‘)

de

v X, T Ck i S X S Xy

>

2

(X, — xk‘ik_Gk,ik)
4ek‘ik

0

s X SX <Xy T €

s otherwise

(2.18)

where ¢, , >0 denotes the smoothing range around x, ;,
using the no-overlap condition:

(2.19)

Xpig 1 ™ Xk iy Z €higr1 T €y

This scheme has all the above-mentioned desirable prop-
erties, except for a general guarantee for monotonicity
preservation. Nevertheless, the scheme was designed to
preserve monotonicity in most practical cases. For any
n-dimensional C° piecewise-multilinear function on a hy-
perrectangular grid, the monotonicity preservation of this
function and even of its first partial derivatives can be
proven. This can be done in a straightforward manner, by
applying the smoothing scheme to a piecewise-multilinear
function written as a tensor product of linear B-splines. So
the scheme is ideal for smoothing piecewise-linear models,
which are special cases of table models 1 and 2. The
symmetry arises because all the cross-derivatives that occur
in the scheme exist and are C° for an F being a piecewise
sum of products of C' one-dimensional functions in differ-
ent directions, as generated by ¥; or ¥,. This makes the
order of differentiation irrelevant. Fig. 3 illustrates the
effect of the smoothing shell when applied to a two-dimen-
sional piecewise-linear model.

2.5. Algorithms for Choosing Local
One-Dimensional Descriptions

To study the expressive power of the table models, it
was assumed that we could obtain exact descriptions along
the gridlines. This is not realistic, of course. However, we
can come close by using suitable heuristics, that choose the
most adequate local description from a basis of C!
primary functions as in [15], in short &X' ()€
{primary(-)}. In this paper only the following two primary
functions are used:

primary, (x) £ a, + a;x + a,x?
(2.20)

The choice of the local descriptions and the processing of
coefficients to interpolate between (x,,,F . ;) and
(X ipe s Fipo i i 1 ikt 1,4,) OCCUTS at the start-up of the
circuit simulation, which makes the increased memory
usage only temporary.

One set of heuristics chooses a primary function for
interpolating three table points, and the coefficients of this

primary function are then calculated. The heuristics are

primary, (x) £ by + b, b5
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T8 Fo . x)

Fig. 3.

applied twice, once to the table points at x, , _,, x;
and x, ; ,,, and once to the table points at x; ,, X, , i1
and x; , .,. If the table values are strictly monotonic, the
quadratic polynomial is normally chosen, unless this would
cause a nonmonotonicity between x, , and x,, ., in
which case the exponential primary function is used. For
nonmonotonic table values the quadratic polynomial is
used. There are some exceptional cases, concerning nearly
identical table values, for which a linear interpolation is
chosen between x,, and x, ., Fig. 4 shows several
cases for the heuristics, involving the table points at x,_ i

Subsequently another set of heuristics decides which of
the two interpolating primary functions, resulting from the
above-mentioned two sets of three table points each, will
ultimately be used to interpolate the table points at x ki,
and x, ; .. If the primary functions are of the same type,
a new combination of coefficients may be formed to
obtain an averaged result. Otherwise, the polynomial func-
tion has priority over the exponential function. As a result,
the use of four table points in the heuristics helps to
discriminate between leveling off as part of monotonic
behavior and leveling off as part of a nonmonotonicity in
the table values. In the latter case there is no reason to use
an exponential form.

The physical motivation for the heuristics is found in the
observation that, for many semiconductor devices, a sud-
den flattening of a device characteristic is caused by a
sudden lack (depletion) of charge carriers somewhere in
the device. Then the thermal generation of charge carriers
may become the dominant physical effect for that part of
the device characteristic. The thermal generation is gov-
erned by Boltzmann statistics, which lead to exponential
dependencies on the applied voltages. Also, because many
device characteristics for currents and charges are mono-
tonic as a function of the applied voltages, a nonmono-
tonic approximating function for monotonic table values
suggests that the wrong approximating function was
chosen.

There is no compelling reason to use only the two
primary functions (2.20). For example, for modeling
JFET’s it can be advantageous to include a square-root-like
primary function to model the effects of depletion layer
growth. Then it may be possible to obtain a further reduc-
tion in the number of table points needed for a given
accuracy. Such an extension may not be worth the effort,

Smoothing scheme applied to piecewise-linear model.

Selection for xi € [xk i, » Xx.iy +1 ]

T .
#®xy ) Table values strictly monotonic,
parabolic interpolation monotonic:

select ag+ aj x + a; x2

X —>

T T
XK. iy +1 Ak iy +2

Table values strictly monotonic,
parabolic interpolation nonmonotonic:

select bo + by . b5

Xy —

T
XK.y +2

Table values nonmonotonic:

o select ap+ a; x + a x?

Xy —»

T T T
XK, iy XK, iy +1 XK, i +2

Fig. 4. Some typical heuristics for primary function selection.

however, because much of the square root behavior can be
approximated with adequate storage efficiency by polyno-
mial pieces. Furthermore, taking a square root on a com-
puter is usually a rather costly (time-consuming) operation.
Piecewise-linear models can easily be obtained from
table models 1 and 2 by simplifying the heuristics for
choosing ¢*) 10 the fixed choice of linearly interpolating
pieces, and by disabling the smoothing operator, taking
€., <0.
III. EBErRs-MoLL AND GLASMOST
RECONSTRUCTABILITY

As stated before, the eigenfunctions of a table model
should cover the multidimensional expressions of some
basic physical device models. Also, the heuristics should be
smart enough to find the exact behavior along the gridlines
for these physical models. If these conditions are met, then
the behavior of these physical models is reconstructed
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exactly by the table models. Such a table model will
probably also be suitable for modeling the less ideal but
still strongly related behavior of real devices. Consider,
therefore, the two-dimensional expressions for the dc cur-
rents I 5 ¢ (Vgg, Vpe) of the Ebers—Moll bipolar transis-
tor model and the dc currents 1,(V,,, V,,) of the GLAS-
MOST MOSFET model.

Ebers—Moll bipolar n-p-n transistor model [10]:
® Collector current I

I
I [quEE/kBT— 1] _=s [qusc/ksT_ 1] .
5 al
® Base current Iy:

I (L_l)[quna/kaT_]]+] (l _1)[eqync/k5T._1]
5 N g
ay ay
® Emitter current Ig:
Ix[eqyac/er_‘l]—~I—s‘[quBE/k5T—1]. (31)
Y

GLASMOST n-channel MOSFET transistor model

[19]:
® V2 Vo AVyy 2V, 1, in linear region:
1 WuC,,
s VeVl Ve + Vit - 200].
® Vo2 Vo AV,y <V, 1, for drain saturation:
WiCoy
7 [V = Vol [V = Vo + 2]

— V2 [eWea= Vo)V _1]]_
® Vo <Vo AV 2 Vy, 1, for source saturation:
%[Vé[e(m—%vv‘h_l]
Vs = Vo] [Vea = Vo +2Va] |-
® V,, <Vy AV, <V, I, in subthreshold region:
#Cox

Wi
P Ve Vo)/ Vi — p(Vea=V0)/ Vi
Vale e .

7 (32)

By inspection of (2.11) and (2.13), one may verify that
for n>1 all of these current expressions can be written in
the form (2.11) as well as (2.13). The same applies to the
Ebers—Moll p-n-p transistor model and the GLASMOST
p-channel transistor model. This means that the functions
of Ebers-Moll and GLASMOST are in the intersection of
the sets of eigenfunctions of ¥, and ¥,. So both table
models give the exact model behavior if the behavior along
the gridlines is exact. Furthermore, for a single running
variable, the behavior in each current expression is de-
scribed by one of the primary functions among which the
heuristics choose: it is either a quadratic polynomial or an
exponential form. Therefore, using the table models and
heuristics described in this paper, exact reconstruction of
the behavior of the I 5 p(Vpg, Vpe) and 1, (V,, V) ex-
pressions is obtained. The only provision is that the volt-
age steps are not too small, to insure that the exponential
behavior is not interpreted as polynomial behavior. How-
ever this just helps to reduce the table sizes. Only near the
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transition between different regions one may expect errors,
because the heuristics then operate upon data from differ-
ent expressions. However, for GLASMOST it can be veri-
fied that the heuristics described in the previous section
give exact results even around the transition at the thresh-
old voltage V,, provided V, is a grid position and the
b,-value farthest from 1 is chosen when selecting among
exponential functions as given in (2.20).

IV. EXPERIMENTAL RESULTS

Three-dimensional versions of table models 1 and 2 and
the smoothing shell have been programmed in Fortran,
including their first partial derivatives. The models have
been implemented in the circuit simulation program
PHILPAC (a proprietary Philips package, comparable to
SPICE). The three-dimensional table models can represent
any four-terminal element by modeling the three indepen-
dent terminal currents and charges as a function of the
three independent voltages, i.e., taking a reference node
and applying charge conservation. In general this leads to
six tables per device, but provisions were made to use
fewer tables whenever there is a smaller number of inde-
pendent variables. For example, dc simulations using
Ebers—Moll data could be done with only two current
tables, e.g., for collector and base current, because of a
zero substrate current. Transient simulations with GLAS-
MOST data require three tables per transistor type (n-
channel or p-channel). The three tables consist of one table
for the drain (or source) current, because of zero gate and
bulk currents, and two tables for the terminal charges,
because of a zero bulk charge.

The table model implementations also include multipli-
cation parameters in their parameter sets. These can be
used to model a number of devices having different geome-
tries, while using the current and charge tables of only a
single device. This is done by multiplying the table model
outcomes by a geometry-dependent parameter value, which
may be different for currents and charges. In general, such
a simple geometry scaling will be accurate only for a
limited range of device geometries, and additional sets of
tables are needed to model devices having geometries
beyond this range.

Three-dimensional implementations of table models 1
and 2 were used in all experiments, even though for
Ebers-Moll and GLASMOST a two-dimensional table
model would have sufficed. Table values were obtained
from the Ebers—Moll and GLASMOST models, for which
the following model parameter values were used:

Ebers-Moll: GLASMOST:
kpT/q =30 mV Vyp=30mV
I,=2X10""A p=0.0675m?V-1ls!
ay = 0.985 C,=138x10"*F-m~2
a;=0.72 V=1V
W =20 pm
L=2pm

In all experiments the following nonequidistant grid was
used: table points were positioned at integer-valued volt-
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Fig. 6. QVD splines for Ebers-Moll, I-(Vgg, V5c)-

ages, with additional table points at 0.5, 0.75, 1.25, and 1.5
V for Vg, Vae (n-p-n Ebers-Moll) and for V,,, V,
(n-channel GLASMOST). However, for the separate mod-
eling of p-channel MOSFET behavior, the negated set of
n-channel grid positions was used, in accordance with the
negative value of the threshold voltage for the p-channel
MOSFET. The p-channel MOSFET behavior was derived
from the n-channel GLASMOST model by sign changes in
currents, charges, and applied voltages. The smoothing €’s
in (2.17) were 1 mV or'less in all cases, which proved
sufficient to obtain good convergence.

For comparison purposes, experiments were also per-
formed with the C! three-dimensional tensor products of
quadratic variation diminishing (QVD) splines [5], [8]. The
set of knots was chosen identical to the non-equidistant
grid used for table models 1 and 2. Sample points with
corresponding table values were positioned midway be-
tween successive knots, as required for Schoenberg’s QVD
splines. The set of table values for QVD splines is, there-
fore, generally not the same as the set of table values for
table models 1 and 2.

4.1. Ebers-Moll Bipolar Table Modeling Example

Fig. 5 shows the behavior of table model 1 for modeling
the Ebers—Moll collector current. Exactly the same plot
arises when using table model 2, or when using the
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Fig. 7. Circuit schematic of a simple bipolar inverter.
.
° = VN(@©)=0
o .A\\“x
o NYN®@)

§2]
<
z

0.0

0.0 1.0 2.0 3.0 4.0 5.0
EL (V)

Fig. 8. DC curves of the bipolar inverter, using table model 1 (continu-

ous lines) and QVD splines (dashed).

Ebers—Moll model itself, because of the exact reconstruc-
tion of Ebers—Moll behavior by both table models. Fig. 6
shows the behavior obtained using QVD splines. The col-
lector currents modeled by the latter become more than an
order of magnitude too large in the plotted voltage range.
The reason is that most of the “tail” of a quadratic
B-spline, associated with a particular sample point, de-
creases far too slowly to follow the exponential decrease in
current with decreasing voltage. Significant consequences
for circuit behavior can be demonstrated with the simple
bipolar inverter shown in Fig. 7. Fig. 8 shows the PHILPAC
simulation results for the dc transfer characteristics of this
inverter, using table model 1 (solid lines) and QVD splines
(dashed lines) with Ebers—Moll data for the current tables.
Results obtained with table model 2 and the Ebers—Moll
model itself are not shown, because they give the same
characteristics as table model 1. It is worth noticing that
the dashed lines predict the beginning of circuit response
to occur just beyond E1= 0.5 V. This erroneous result is a
consequence of the sample points at V. =0.875 V for
large negative V.. The large associated current values are
weighted by B-splines having their lowest voltage knots at
Vpe = 0.5 V. Because this weight becomes nonnegligible
soon beyond V= 0.5 V, significant circuit currents are
predicted just beyond E1=0.5 V. The table model 1
characteristics reflect the correct bipolar turn-on voltage of
approximately 0.7 V. This example clearly demonstrates
the importance of accurate highly nonlinear modeling.
Table models 1 and 2 are capable of doing that, whereas
QVD splines would require a much denser grid to yield
accurate results.
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UN(S)

UN(6)
Fig. 10. A 9-stage CMOS ring oscillator circuit.

4.2. GLASMOST MOSFET Table Modeling Example

Fig. 9 shows the behavior of table model 1 for modeling
the GLASMOST drain(source) current. Again, the same
plot arises when using table model 2, or when using the
GLASMOST model itself, because of the exact reconstruc-
tion of GLASMOST dc current behavior by both table
models. The table model results are also exact near the
transition at Vj, because V;=1 V is a grid position. If
circuit performance depends critically on the exponential
subthreshold behavior of a MOSFET [19], [22], table mod-
els 1 and 2 will demonstrate major advantages over QVD
splines, just as with bipolar modeling. However, in order to
show that table models 1 and 2 also yield excellent results
with rather subthreshold-insensitive digital circuits, simula-
tions were performed for the 9-stage CMOS ring oscillator
shown in Fig. 10. GLASMOST data were used for the
current and charge tables. The PHILPAC simulation re-
sults for the dc transfer characteristic of a single CMOS
inverter stage are shown in Fig. 11. QVD splines now give
results (dashed line) that are close to the results obtained
with the exact modeling by table model 1 (solid line).
Results for table model 2 and GLASMOST itself are not
shown, because their results coincide with the results for
table model 1, due to the exact reconstruction of the dc
current behavior. The good results obtained with QVD
splines are not surprising, because the drain—source cur-
rents of one MOSFET operating within, or near, its sub-
threshold region, are too small to cause a significant
drain-source voltage drop across the other, fully open,
MOSFET. Only rather large currents, to which any expo-
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DC curve of a single stage of the ring oscillator, using table
model 1 (continuous line) and QVD splines (dashed).

Fig. 11.
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Fig. 12. (a) Transient simulations of the ring oscillator, using GLAS-

OST (continuous line), table model 1 (dashed), table model 2 (chain-

dashed), and QVD splines (dotted). (b) Enlargement of the rightmost
part of (a).

nential contribution in (3.2) can only make negligible
contributions, will cause a significant drain-source voltage
drop across a fully open MOSFET. The dc behavior of the
inverter is, therefore, dominated by the polynomial parts
of (3.2), which can be modeled accurately with QVD
splines.

Fig. 12 shows the results of transient simulations, in
which the oscillator was enabled after 0.5 ns. The step-size
for time integration had an upper bound determined by
the output points, which were requested every 5 ps. The
timing of a ring oscillator strongly depends on the charge
model. The GLASMOST charge model behavior is not
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reconstructed exactly by table models 1 and 2. This ex-
plains why the transient response obtained with table
model 1 (dashed line) and table model 2 (chain-dashed
line) differs from the behavior obtained with the GLAS-
MOST model (solid line). Still, the timing obtained with
these table models is more accurate than the timing ob-
tained with QVD splines (dotted line). Nevertheless, the
results obtained with QVD splines are also good. Part of
the explanation lies in the fact that the voltage dependen-
cies of the GLASMOST charges rapidly become almost
linear when entering the drain saturation and source satu-
ration regions. Purely linear behavior is reconstructed ex-
actly by QVD splines [5], [8], as well as by table models 1
and 2. The ring oscillator example demonstrates that table
models 1 and 2 can also be attractive in problem cases that
are known to be well suited to piecewise-polynomial mod-
eling. An important advantage is that one no longer needs
to assess whether a problem is well suited to piecewise-
polynomial modeling.

4.3. Other Experimental Observations

The model evaluation times obtained for the three-
dimensional implementations of table models 1 and 2 were
within a few percent identical. The Fortran implementa-
tion of these table models for an IBM3090 scalar processor
gave evaluation times per device characteristic between 31
and 53 ps (dependent on the MOSFET operating region).
These times include the calculation of the three partial
derivatives and the subroutine call overhead, and involve
the use of a nonequidistant grid. This outperforms ad-
vanced physical CAD device models, for which evaluation
times of 50 ps or more are not uncommon. The table
model implementations can also compete in speed with
(similarly optimized) implementations of conventional
table models. For comparison, when using three-dimen-
sional tensor products of QVD splines, evaluation times of
26 ps were obtained. Comparable model evaluation times
of 37 us were also obtained in [8), using QVD splines on a
Cray-1A. The development time for adapting table models
1 and 2 to a new device is also negligible, involving a few
seconds of preprocessing, using the same set of heuristics
for bipolar as well as for MOSFET devices.

The increased memory usage of table models 1 and 2 at
runtime, due to the preprocessing for primary function
selection, can be seen as a disadvantage. For every table
point and for each dimension, the primary function type is
stored along with three double-word coefficients, leading
to an approximate tenfold increase in storage for the
three-dimensional table models after preprocessing. With-
out this preprocessing, simulation times would be much
longer. QVD splines do not require such preprocessing.
Nevertheless, QVD splines would require a far greater
increase in storage in order to accurately model bipolar
and MOSFET subthreshold dc current behavior. For ex-
ample, considering the thermal voltage as a characteristic
voltage step for a change in the exponential current behav-
ior, a grid spacing of a few tens of millivolts would be
more appropriate for QVD splines. This would give an
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order of magnitude increase over the number of sample
point positions per dimension used in this paper. A tenfold
increase in the number of sample point positions per
dimension already implies a hundredfold increase in the
number of table points in two dimensions. Moreover,
substantially increasing the number of table points in-
volves many additional measurements or device simula-
tions, which may be much more costly than just the
associated increase in memory usage. In practice, com-
puter storage limitations have not yet presented any re-
strictions to the use of table models 1 and 2.

The Ebers—Moll and GLASMOST examples prove the
power and usefulness of table models 1 and 2. Very
accurate approximations have also been obtained for other,
less ideal, device characteristics, using the same grid posi-
tions as described in this paper. Nevertheless, table model
1 will often be preferred over table model 2. Model 2 has
extra conditions (2.10) on the table values. Furthermore,
nonmonotonic functions ¢*) occurring in (2.9) can lead to
very large nonmonotonicities, because the values of the
weights w*) calculated from (2.9) may reach far beyond
the range [0, 1], especially for nearly identical table values.
Even if all interpolating ¢{*) ,(x,) are (forced to be)
monotonic within their corresponding intervals x, €
[Xk,ip Xiips1) glving w® (x,) €[0,1], it appears that
nonlinear functions w) can lead rather easily to un-
wanted nonmonotonicities between gridlines. Present expe-
rience indicates that table model 1 is more robust for many
practical situations.

V. CONCLUSIONS

The two table models presented in this paper combine
several advantages of physical models and piecewise-poly-
nomial table models, while avoiding several disadvantages.
A good set of heuristics and primary functions makes it
possible to obtain at least some indication of the likely
physical background of the parameters. Automatic highly
nonlinear modeling has become practical, as is demon-
strated by the exact modeling of the dc expressions of a
basic bipolar and a basic MOSFET model. The table
models are also general purpose models, as shown by the
fact that no change is needed to reconstruct the behavior
of the two device models exactly, not even a change in the
heuristics. The table models, as implemented in the circuit
simulator PHILPAC, may well be the first table models
capable of accurate automatic MOSFET subthreshold and
bipolar modeling. Furthermore, the method evaluation
times are short, as is the model development time. No
time-consuming optimization procedures are needed to
obtain accurate results. The smoothing shell guarantees C!
smoothness. Also, monotonicity in the table values is usu-
ally maintained in the table model when using suitable
local heuristics. If the heuristics always choose linear pieces,
monotonicity preservation is guaranteed, even after appli-
cation of the smoothing shell. In that case, the table
models have some of the major attractive properties of
tensor products of QVD splines, namely C! smoothness
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and monotonicity preservation. On the other hand, suit-
able heuristics and primary functions can make the table
models very compact, requiring few device measurements
or device simulations, and little disk storage. Therefore,
some finetuning will always be necessary to obtain the best
compromise between conflicting model properties for a
particular application. The modeling framework presented
in this paper may aid in structuring this difficult work.

APPENDIX
EIGENFUNCTIONS OF TABLE MODELS 1 AND 2

Because the general proofs for the exact reconstructabil-
ity of (2.11) and (2.13) are somewhat laborious in terms of
the amount of calculus, only an outline of the major steps
will be given. Basically, the proofs are obtained by substi-
tution of (2.11) in (2.7), and (2.9) and (2.13) in (2.8). In the
one-dimensional case, any one-dimensional function is an
eigenfunction of ¥, and ¥,, because all behavior occurs
along a (single) gridline.

For ¥, induction on n can be applied. First the induc-
tive proof is delivered for a single term from G, in (2.11).
The vector t as an index to g is then irrelevant for this
part of the proof, because r is just a uniqueness identifier
for g in the case of multiple terms. Only the effect of T on
the form of a G,-term needs to be considered. For a term
containing one of the factors g®(x,),- - -, g{™(x,,), the
equation obtained by substitution for n = m can be sepa-
rated from the equation resulting for n = m +1. Then, by
using the induction proposition that this term is an eigen-
function for n = m, it follows that a term containing the
same factor is an eigenfunction for all n > m. This means
that if such a term is an eigenfunction for a particular
dimension n, it automatically becomes an eigenfunction
for all higher dimensions n as well. To prove the induction
proposition, it is sufficient to prove that terms containing
one of the factors gM(x,),---, g{" V(x,,_,) are eigen-
functions for n = m —1 (and hence, for n = m and higher),
and to prove that a term containing g{™(x,,) is an eigen-
function for n=m. Continuing this partitioning recur-
sively, it becomes sufficient to prove that terms containing
one of the factors g®(x,), -, g{"™(x,,) are eigenfunc-
tions for n=1,- - -, m, respectively. This can be proven for
any m without induction. Finally it is shown by substitu-
tion that any linear combination of eigenfunctions of ¥, is
again an eigenfunction of ¥, thus concluding the proof
that G, describes eigenfunctions of ¥,.

For ¥, it can be verified by substitution that the opera-
tion of ¥, on G, in (2.13) yields a function of the same
form as G,, but with potentially different coefficients c’.
However, both expressions must interpolate the 2" table
points located at the vertices of a hyperrectangle, because
¥, does not modify the exact descriptions along the grid-
lines. Therefore, the 2" coefficients become the unknowns
of 2" equations for interpolation, giving a unique solution
(meaning ¢, =c,) if the determinant of the set of equa-
tions is nonzero. So it just has to be shown that (2.10) is
sufficient to obtain a nonzero determinant. The conditions
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(2.10) imply
89 (xy i) # 8 (x4 11)- (A1)
Introducing the notation:
ak.Oég(k)(xk,ik); ak,lég(k)(xk,:k+1) (A2)

the determinant of size 2" X 2” becomes

n n
I_Ia;c‘k,f,; =0 l_lazk,-r,{ =1
k=1 i k=1 e
n ’ n ’
Hal?‘,n; =0 I—Ial",y,; =1
k=1 =1 k=1 =1
n l a n
k,0 2n-1
=det[ ® (1 )] =1 (ap1—axo) (A3)
k=1 A k=1

which is obviously nonzero under conditions (Al). A treat-
ment of Kronecker products can be found in [14].

REFERENCES

[1}] Ph. E. Allen and K. S. Yoon, “A table look-up MOSFET model for
analog applications,” in Proc. Int. Conf. Computer-Aided Design,
Santa Clara, CA, pp. 124-127, Nov. 1988,

[2] J. A. Barby, “Multidimensional splines for modeling FET nonlin-
earities,” Thesis UW /ICR 86-01, Univ. of Waterloo, Canada, 1986.

[31 J. A. Barby, J. Vlach, and K. Singhal, “Polynomial splines for
MOSFET model approximation,” JEEE Trans. Computer-Aided
Design, vol. 7, pp. 557~566, May 1988.

{4] G. Bischoff and J. P. Krusius, “Technology independent device
modeling for simulation of integrated circuits for FET
technologies,” IEEE Trans. Computer-Aided Design, vol. CAD-4,
pp- 99-109, Jan. 1985.

[5) C. de Boor, A Practical Guide to Splines. Berlin, Germany:
Springer-Verlag, 1978.

[6] J. L. Burns, “Empirical MOSFET models for circuit simulation,”
Mem. No. UCB/ERL M84,/43, Univ. Calif. Berkeley, May 1984.

[7} L. O. Chua and A.-C. Deng, “ Canonical piecewise-linear modeling,”
IEEE Trans. Circuits Syst., vol. CAS-33, pp. 511-525, May 1986.

[8] W.M. Coughran, E. Grosse and D. J. Rose, “Variation diminishing
splines in simulation,” SIAM J. Sci. Stat. Comput., vol. 7, pp.
696-705, Apr. 1986.

[9] D. Divekar, D. Ryan, J. Chan, and J. Deutsch, “Fast and accurate

table look-up MOSFET model for circuit simulation,” in Proc.

Custom Integrated Circuits Conf., Rochester, NY, pp. 621-623,

May 1986.

J. J. Ebers and J. L. Moll, “Large-signal behavior of junction

transistors,” Proc. IRE, vol. 42, pp. 1761-1772, Dec. 1954.

A. R. Forrest, “On Coons and otﬁer methods for the representation

of curved surfaces,” Comput. Graph. Image Proc., vol. 1, pp.

341-359, 1972.

J. L. Huertas and A. Rueda, “Sectionwise piecewise polynomial

functions: Applications to the analysis and synthesis of nonlinear

n-Port networks,” IEEE Trans. Circuits Syst., vol. CAS-31, pp.

897-906, Oct. 1984.

Y.-H. Jun and S.-B. Park, “Piecewise polynomial models for MOS-

FET dc characteristics with continuous first order derivative,” in

Proc. Int. Symp. on Circuits and Systems, Espoo, Finland, pp.

2589-2592, June 1988.

M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix

Inequalities vol. 14, Boston, MA: Prindle, Weber, and Schmidt,

1964.

P. B. L. Meijer, “Table models for device modelling,” in Proc. Int.

Symp. on Circuits and Systems, Espoo, Finland, pp. 2593-2596,

June 1988.

K. J. Narendra, D. Agnew and M. S. Nakhla, “Two-dimensional

table look-up MOSFET model,” in Proc. Int. Conf. on Computer-

Aided Design, Santa Clara, CA, pp. 201-203, Sept. 1983.

K.-G. Rauh, “A table model for circuit simulation,” in Proc.

Twelfth European Solid-State Circuits Conf., Delft, The Nether-

lands, pp. 211-213, 1986.

A. R. Rofougaran, B. Furman, and A. A. Abidi, “Accurate analog

modeling of short channel FETs based on table lookup,” in Proc.

Int. Symp. on Circuits and Systems, Espoo, Finland, pp. 413-416,

June 1988.

(10]
(11]

(12]

(13]

(14

[15]

(16]

17

(18]



346 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 1990

[19] M. F. Sevat, “GLASMOST: A MOSFET model of high numerical
quality,” in Proc. Int. Symp. on Circuits and Systems, Espoo,
Finland, pp. 2597-2600, June 1988.

[20] T. Shima, “Device and circuit simulator integration techniques,” in
W. L. Engl, ed., Process and Device Modeling. Amsterdam, The
Netherlands: North-Holland, 1986, ch. 14, pp. 433-459.

[21] P. Subramaniam, “Table models for timing simulation,” Proc.
Custom Integrated Circuits Conf., Rochester, NY, pp. 310-314,
May 1984.

[22] G. T. Wright, “Physical and CAD models for the implanted-chan-
nel VLSI MOSFET,” IEEE Trans. Electron Devices, vol. ED-34,
pp- 823-833, Apr. 1987.

Peter B. L. Meijer received the master’s degree
in physics from the Delft University of Technol-
ogy, Delft, The Netherlands, in 1985.

Since 1985, he has been with the group CAD
for VLSI Circuits at the Philips Research Labo-
ratories in Eindhoven. His current research inter-
ests include device and circuit modeling, deter-
ministic chaos, neural networks, and self-
organizing systems.




