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Abstract - Device models determine to a large extent the
attainable quality of electronic circuit simulation. This pa-
per describes a general approach te the automatic con-
struction of C'!' multidimensional (multivariate) device
models from table values. By using suitable heuristics, a
compact and accurate C! table model for highly nonlinear
multidimensional behaviour can be obtained. An example
demonstrates the basic ideas.

Introduction

Device models play a crucial role in electronic circuit
simulation. They determine the attainable quality in the
prediction and verification of the circuit behaviour for a
given network. The demands placed upon the models are
strong. One wants short model evaluation times, since
nowadays a major fraction of VLSI simulation time is
spent evaluating device models. The models must be ac-
curate, because they limit the maximum simulation accu-
racy. The simulation algorithms (e.g. Newton-Raphson)
may pose additional restrictions for rapid convergence,
like continuity and monotonicity of the outcomes of the
device models as a function of each of the controlling
variables. Usually the continuity of the first partial deriv-
atives is also required. Other restrictions follow from
charge and energy conservation laws.

The classical approach has been to study the device phys-
ics, and to solve the corresponding device equations under
simplifying assumptions about the boundary conditions.
This physical modelling has the important advantage of a
good predictive power for the effects of device modifica-
tions. However, for the ever smaller devices in VLSI, a
simple geometrical subdivision into a few 1-dimensional
subsystems treatable for analysis is no longer accurate.
The divide-and-conquer approach starts to fail: e.g.
multidimensional interactions, surface states, short-
channel effects and narrow width effects can no longer be
neglected nor be linearized. Furthermore, for more com-
plicated models it becomes hard, and therefore very time-
consuming, to match the subsystem descriptions in a way
that fulfills the above-mentioned numerical requirements.

Therefore, some means of automatically generating suit-
able models for circuit simulation is desirable. The most
obvious solution is to use table models that generate
smooth curves from their input data. These input data can
be obtained from measurements or device simulations.

Most table modelling methods known in the literature
apply  piecewise  polynomial (pp)  descriptions
[1 —8,10,12] . Especially the B-spline tensor product ap-
proach is becoming popular, partly due to the ease of
constructing a smooth monotonic approximation. In spite
of the excellent mathematical properties, this approach is
still not well suited for accurate semiconductor device
modelling purposes, because a strongly exponential

behaviour in part of the operating regime is very common
(e.g. for MOSFET'’s and bipolar devices). Accurate pp
modelling of these exponential regions leads to excessive
memory demands in the multidimensional case. The lo-
cation of the transition between regions of qualitatively
different behaviour is in general unknown and variable-
dependent. This means that one should add to the table
model at least a rudimentary intelligence that exploits
some a priori knowledge about the device data and that
applies selection criteria for choosing the most adequate
local description. However, pushing the incorporated
knowledge too far would again yield a very device de-
pendent modelling scheme, which is one of the disadvan-
tages of physical modelling.

In the following sections a general approach to the mod-
elling of heavily nonlinear multidimensional functions is
presented. With an example it is then shown that the ap-
proach can yield good approximations to physically
meaningful behaviour.

Principles

For most operating points of a semiconductor device, only
a few physical effects dominate the device behaviour.
Furthermore, points with the same dominating physical
effects tend to fall in clusters, i.e. in operating regions. In
physical modelling one tries to determine the dominating
physical effects and boundary conditions for a particular
operating region, and tries to solve for explicit expressions
describing the device behaviour, usually with the help of
additional simplifications and assumptions. Quite often
the modelling problem then reduces to the solution of a
set of simple differential equations. Now we reverse this
approach. The most frequent (idealized) semiconductor
configurations constitute a problem space, from which a
limited number of characteristic behavioural expressions
arises. We expect that for a non-ideal device the local
behaviour can still be adequately described by these ex-
pressions. They will be called primary functions, since they
constitute a basis for the models to be constructed. We
just have to choose the most appropriate primary function
(or a combination of them) for a given set of table points.
After determining the coefficients of the primary function
chosen, we have a local description of the device
behaviour. The local descriptions are then somehow put
together to obtain a sufticiently smooth result. The choice
of the most adequate primary function is made by
heuristics, based upon general knowledge of semiconduc-
tor physics and a local set of table points.

Methods

We construct an interpolating table model for an n-
dimensional table (n > 1) defined on a rectangular grid
Iy defined by
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Here X, ; is the i;-th discrete position in the k-th direction.
The n-dimensional table has a value Fi i associated with
each of the grid points (xy; , ..., X, )

We decompose the n-dimensional interpolation
F(x,, .., X,) into a set of l-dimensional interpolations I,.
I, gives an interpolated value at x; using a 1-dimensional
table containing N; points:

A
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Fi i (x1) =
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This scheme uses real table points to obtain 1-dimensional
interpolations in the x,-direction. The results act as table
points for the 1-dimensional interpolations in the next di-
rection x;, [11]. We will call such auxiliary table points
virtual table points. If the 1-dimensional interpolations in
this scheme are exact, i.e. if they match the behaviour of
the device exactly, then the n-dimensional interpolation is
also exact. This is because the n-dimensional interpolation
consists only of 1-dimensional interpolations. So this de-
composition does not restrict the attainable accuracy in
n-dimensional modelling.

Notice that all interpolations at any particular level in the .

recursion can be performed in parallel, thus leading to
O(n) evaluation times on sufficiently parallel computer
architectures (but then the amount of hardware needed
grows exponentially with n).

The partial derivatives are given by

oF (x,,.., %) 0l
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To obtain a C! result, it is therefore sufficient to make
I,..,1, C' functions of x,..,x, respectively, and
I, ..., I, C! functions of the virtual table values in their
argument lists.

Now we decompose the general 1-dimensional interpo-
lations into a set of piecewise functions. This allows us to
apply local selection of the most adequate description, and
the resulting local description can probably be simple, be-
cause it only has to model a relatively small region. This
helps to achieve a computationally efficient model.

Let for x; < x < xy

LG Fli= 1o  NJ) 2 3 by (0, (0)
i=t
with

)2 60 ;5 fy) 2 fy, (0

f; (x) i a C! function on [x;_ , Xiy ]
I<i<N " interpolating
(-1 Fioy)y (%, Fi) and (x40, Fipy)

X = Xy .

=% xel[x_,x%x], i=2,..,N
A

h; (x) = | Xix1 —

—m, ).'G[X,‘,XH_I] s 1=l,...,N-l

0 otherwise

The hat functions h; (x) induce continuity of the derivative
with respect to x, provided each piecewise function f; (x)
is itselve C' within the range of non-zero values of its
corresponding hat function, and interpolates its three
supporting (virtual) table points. Furthermore, the hat
functions do not influence the interpolation result if
neighbouring (overlapping) piecewise functions are the
same, e.g. when exact, at their overlap. So this decom-
position does not restrict the attainable accuracy in the
|-dimensional modelling of C! behaviour. This also means
that all C! n-dimensional models (e.g. C' tensor products
of B-splines) are covered by the present level of decom-
position into C' 1-dimensional piecewise functions, pro-
vided the table has been generated by these models.
Interpolation is general as long as we do not specify where
the table to be interpolated comes from. It may have been
generated by an approximation scheme that itself used
another table to approximate. We need not exclude the
possibility of modifying the original set of table points.

So far we have an n-dimensional description that is guar-
anteed C! without having specified the precise shape of the
C! piecewise functions. The large freedom of choice in
selecting the piecewise functions allows us to apply many
physically meaningful heuristics. One such a heuristic
could be, that if we know that the device behaviour is
strictly monotonic as a function of each of the controlling
variables, we should use a (strictly monotonic) exponential
interpolation when a polynomial interpolation would yield
non-monotonic results. The physical motivation lies in the
fact that a sudden ‘flattening’ of the semiconductor device
characteristic as a function of a controlling voltage corre-
sponds to some kind of saturation or pinch-off, which is
often related to a depletion of charge carriers somewhere
in the device. The remaining carriers are generated by
processes governed by Boltzmann statistics, which lead to
exponential dependencies on the controlling voltages. In
the following example we illustrate the results obtained
using this simple heuristic, that chooses the most adequate
piecewise function using a basis consisting of only two
primary functions, a polynomial function and an expo-
nential function.

Example

We consider an example that illustrates the concepts of
semi-physical table modelling. We generate a table with
data from a simple physical MOST model, and compare
the results of the above interpolation scheme with the or-
iginal physical model. The drain-to-source current
behaviour of the 2-dimensional C? physical model
GLASMOST [9] is used as the reference model, with a

2594




threshold of 1V and a thermal voltage of 30mV.
UC, WJL = 2.789 x 104 AV-2. 16 table points per dimen-
sion are used, at voltages -3, -2, -1, 0, 0.5, 0.75, 0.875, 1,
1.125, 1.25, 1.5, 2, 3, 4, 5 and 6V. The non-equidistant
points give some extra weight to the transition region near
the 1V threshold. For simplicity of discussion, we assume
that real and virtual table points are strictly monotonic as
a function of the controlling variables. (In general,
monotonicity of the virtual table points is not guaranteed
and needs special treatment, but in this example the
monotonicity assumption can be made valid.) The
heuristic chooses whether to use a polynomial or an ex-
ponential interpolation based upon a measure of the cur-
vature x

- Fiu -F  x—x,
! F, —F | X1 —%
Let

>0

f(x) 2 wi() Py (0) + (1 —w; () E; ()

e

P;(x) = ag; +aj; x +ay x?

e

E; (x)

with P;(x) and E,;(x) each interpolating (x,;,F,_,) ,
(x;, F;)and (x;,,, Fi.; ) - w; (x;) is a C! pp weight function
of k;. w,;(x;) =0 if the extremal of P; (x) lies in the range
X1, X1 ] - Wilx;)=1if k; is close to 1.

by + by, . by

The results are shown in figures 1-3. Figure 1 shows the
monotonic interpolation of table points representing the
drain-to-source current as a function of gate-to-drain
voltage and gate-to-source voltage. Figure 2 shows the
absolute error normalized to the largest current in this
range. Figure 3 shows the true relative error, but to avoid
dividing by zero the relative error was artificially forced
to zero near V4 =0 (within lmV). The interpolation
causes zero-valued errors at the table points. In most of
each of the four operating regions (the subthreshold, lin-
ear, drain saturation and source saturation region) the er-
rors are also zero. This is because the decomposed
1-dimensional behaviour of GLASMOST is always one
of the two primary functions our heuristic can select. Only
at the transition between different operating regions the
heuristic is unable to make the right choice, which causes
non-zero errors. Still, the normalized absolute error stays
under 0.02%. Even the relative error stays under 50%,
whereas a B-spline approach would yield huge relative
errors. Of course this is an idealized example, but it illus-
trates that the scheme applies quite well to physically
sensible descriptions.

Conclusions

A general C! decomposition into 1-dimensional piecewise
functions can be advantageous in modelling heavily non-
linear multidimensional behaviour. It opens the way for
heuristic rule-based modelling to bring physical knowledge
into table modelling. Thus it becomes possible to achieve
greater accuracy with less table points. However, the
evaluation times on sequential machines can become large
due to the 2(2?®—1)/3 piecewise functions f;(x) in-
volved in a model evaluation. Transitions in qualitative

behaviour are detected automatically by the heuristics,
and although monotonicity is not guaranteed, suitable
heuristics can generate monotonic results in most practical
cases. Furthermore, due to the generality of the approach,
we can see it as a first step towards the automatic con-
struction of very compact physical models. If
neighbouring local descriptions are almost the same, then
a single compact description may adequately model the
whole or a major part of an operating region. In such a
case we only need to save a few coefficients for the de-
scription of the behaviour in this region and for a de-
scription of the position and shape of the region. The
heuristics used for primary function selection may also be
applied as an analytical tool to study the behaviour of a
device, because they indicate in which region which phys-
ical effect dominates.

References

[1] Barby, J.A., Multidimensional Splines for Modeling
FET Nonlinearities, Thesis UW/ICR 86-01, University of
Waterloo, Canada (1986).

[2] Bischoff, G. and Krusius, J.P., Technology Inde-
pendent Device Modeling for Simulation of Integrated
Circuits for FET Technologies, IEEE Trans. on
Computer-Aided Design 4 (1985), 99-109.

[3] Boor, C. de, A Practical Guide to Splines, Springer-
Verlag, Berlin (1978).

[4] Burns, J. L., Empirical MOSFET Models for Circuit
Simulation, Memorandum No. UCB/ERL M84/43, Uni-
versity of California, Berkeley (1984).

[5] Coughran, W. M., Grosse, E. and Rose, D. J., Vari-
ation Diminishing Splines in Simulation, SIAM J. Sci.
Stat. Comput. 7 (1986), 696-705.

[6] Divekar, D., Ryan, D., Chan J. and Deutsch, J., Fast
and Accurate Table Look-Up MOSFET Model for Circuit
Simulation, Custom Integrated Circuits Conference, IEEE
(1986), 621-623.

[7] Narendra K. J., Agnew D. and Nakhla, M. S., Two-
Dimensional Table Look-Up MOSFET Model, Int. Conf.
on Computer-Aided Design, IEEE (1983), 201-203.

[8] Rauh, K. -G., A Table Model for Circuit Simulation,
Twelfth Europian Solid-State Circuits Conference (1986),
211-213.

(9] Sevat, M. F., GLASMOST: A MOSFET Model of
High Numerical Quality, Int. Symp. on Circuits and Sys-
tems, IEEE (1988).

[10] Shima, T., Device and Circuit Simulator Integration
Techniques, Chapter 14 in Engl, W. L. (ed.), Process and
Device Modeling, North-Holland (1986), 433-459.

[11] Steffensen, J. F., Interpolation, Chelsea Publishing
Company (1950), 203-204.

[12] Subramaniam, P., Table Models for Timing Simu-
lation, Custom Integrated Circuits Conference, 1EEE
(1984), 310-314.

2595



Figure 1. Table model for [o( Vg, Vo)
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Figure 2. Normalized absolute error:
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Figure 3. Relative error:
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