
Neural Networks for Device and Circuit
Modelling

Peter B.L. Meijer

Philips Research Laboratories, Eindhoven, The Netherlands
E-mail: Peter.B.L.Meijer@philips.com

Abstract. The standard backpropagation theory for static feedforward neural net-
works can be generalized to include continuous dynamic effects like delays and phase
shifts. The resulting non-quasistatic feedforward neural models can represent a wide
class of nonlinear and dynamic systems, including arbitrary nonlinear static sys-
tems and arbitrary quasi-static systems as well as arbitrary lumped linear dynamic
systems. When feedback connections are allowed, this extends to arbitrary nonlin-
ear dynamic systems corresponding to equations of the general form f (x, ẋ, t) = 0.
Extensions of learning algorithms to include combinations of time domain and fre-
quency domain optimization lead to a semi-automatic modelling path from be-
haviour to simulation models. Model generators have been implemented for a range
of existing analog circuit simulators, including support for the VHDL-AMS and
Verilog-AMS language standards.

1 Introduction

With the continuing advances in digital technology, now with deep-submicron
devices and wires switching at such high frequencies that RF effects appear, it
becomes increasingly hard to maintain a clear separation between the digital
abstraction from 1’s and 0’s upward and the underlying physical world which
is characterized by analog behaviours. Together with the rapidly increasing
complexity of digital and mixed-signal designs, this calls for methodologies
that further support reuse as well as the abstraction from analog behaviour at
the device level to intermediate levels of abstraction. Our aim is to find sim-
plified simulation models while sufficiently preserving the analog functional
behaviour in order to allow for further testing and validation of designs and
design rules through simulation. New language standards like VHDL-AMS
and Verilog-AMS help to co-simulate analog models in a digital environment,
but the task of finding efficient and sufficiently accurate analog and mixed-
signal models often remains a daunting one.

The methodology as outlined in this paper may on the one hand assist
in quickly obtaining accurate analog simulation models where no suitable
or efficient physical device models are available (yet), while on the other
hand it may find applications in macro-modelling for mixed-level mixed-signal
simulation where structural models already do exist in the form of netlists of
interconnected transistors and other devices, but not or not yet in the form
of more efficient simplified functional models.



2 Peter B.L. Meijer

The proposed approach is based on a generalization of feedforward neu-
ral networks, also known as multilayer perceptron (MLP) networks [6]. We
add time differentiation to the connecting weights and use nonlinear transfer
functions and time integration in the neuron bodies to arrive at a modelling
formalism capable of representing the time-dependent nonlinear behaviour
of a very wide class of electronic circuits. Learning of dynamic nonlinear
multivariate behaviour can be done with combinations of time domain and
frequency domain data. However, since the approach is still ultimately rooted
in continuous optimization algorithms for minimizing errors between supplied
behavioural data and model, it does not on its own take away the intrinsic
problems associated with all known continuous nonlinear optimization meth-
ods, such as a possibly slow convergence (when far from the optimum point)
and the risk of being trapped in some local minimum. These problems, if they
occur, can be circumvented or alleviated by using suitable templates for ini-
tializing the neural network topology and parameters. This hybrid approach
will be outlined and illustrated in sections 3 and 4.

2 Neural Network Equations

The neural networks used in this paper are defined in this section. A detailed
motivation for the various specific choices can be found in [4]. Layers are
counted starting with the input layer as layer 0, such that a network with
output layer K involves a total of K+1 layers. Layer k by definition contains
Nk neurons. A vector notation with bold font is used to denote information
on all neurons in a particular layer. A neural network has a vector of inputs
x(0) and a vector of outputs x(K).

The differential equation for the output, or excitation, yik of one particular
neuron i in layer k > 0 is given by

τ2,ik
d2yik
dt2

+ τ1,ik
dyik
dt

+ yik = F (ik)(sik, δik) (1)

with timing parameters τ1,ik and τ2,ik, and the source term F (ik) a (generally
nonlinear) function having an optional transition parameter δik. The weighted
sum sik of results from the preceding layer is further defined as

sik
4
= wik · yk−1 − θik + vik ·

dyk−1

dt

=
Nk−1∑
j=1

wijk yj,k−1 − θik +
Nk−1∑
j=1

vijk
dyj,k−1

dt
(2)

for k > 1, involving weighting parameters wijk and vijk, an offset parameter
θik, and similarly for the neuron layer k = 1 connected to the network inputs



Neural Networks for Device and Circuit Modelling 3

x
(0)
j

sik
4
= wik · x(0) − θik + vik ·

dx(0)

dt

=
N0∑
j=1

wij,0 x
(0)
j − θi,0 +

N0∑
j=1

vij,0
dx(0)

j

dt
(3)

which is analogous to having a dummy neuron layer k = 0 with enforced
neuron j outputs yj,0 ≡ x(0)

j , or in vector notation y0 ≡ x(0).

Finally, to allow for arbitrary network output ranges in case of bounded
functions F (ik), a linear scaling transformation is added to the output stage

x
(K)
i = αi yiK + βi (4)

yielding a network output vector x(K).

The above function F (ik) is for neuron i in layer k applied to the weighted
sum sik of neuron outputs yj,k−1 in the preceding layer k − 1. The optional
transition parameter δik may be used to set an appropriate scale of change in
qualitative transitions in function behaviour, as is common to semiconductor
device modelling. For example, choosing the following function F2 as

F (ik)(sik, δik) = F2(sik, δik)
4
=

1
δ2
ik

ln
cosh δ

2
ik(sik + 1)

2

cosh δ
2
ik(sik − 1)

2

(5)

lets the parameter δik be used to optimize the transition between a nearly
linear region and two asymptotically exponential tails. The function F2 is
illustrated in Fig. 1.

Again referring to [4], it can be shown that the above neural network equa-
tions can represent any lumped linear dynamic system, and can arbitrarily
closely approximate any multivariate static (DC) or quasistatic model—such
as typically used to model the DC and capacitive currents of MOSFET tran-
sistors. Under very weak conditions, this approximation property applies even
when the F (ik) are the same for all neurons, while requiring only three layers
for static models [1–3] and at most four layers for quasistatic models.

Moreover, when allowing for external feedback connections from the out-
puts of the dynamic feedforward neural network as defined above back to



4 Peter B.L. Meijer

-2

0

2

s-5

-2.5

0

2.5

5

delta

-1

-0.5

0

0.5

1

F2

-2

0

2

s

-1

-0.5

0

0.5

1

F2

Fig. 1. Neuron nonlinearity F2(sik, δik).

the network inputs, it can be shown1 that the resulting class of neural net-
works can represent arbitrary nonlinear dynamic systems corresponding to
equations of the general form f (x, ẋ, t) = 0, thus covering a very broad class
of multidimensional nonlinear non-quasistatic systems [4,5]. This includes
systems having multiple DC solutions, which the above-defined feedforward
neural networks cannot represent without these additional feedback connec-
tions.

3 Initialization Templates and Learning Phase

Apart from using one and the same nonlinearity for all neurons, one may
also select an appropriate function F (ik) for each neuron individually, for
instance by using initializing templates that capture any available a priori
knowledge about the approximate behaviour or structure of the device or
circuit to be modelled. Furthermore, once known, the set of poles and zeros
of any linear transfer function can be mapped exactly and constructively to
corresponding linear(ized) neural (sub)networks [4]. Univariate transcenden-
tal functions, such as sine, square root and exponential, are readily associated
1 The existence proof builds on the theorems for static models [1–4]. By defining a

companion function F (x, ẋ, t) we may arbitrarily closely approximate the static
(w.r.t. the direct arguments x, ẋ and t) function expression f (x, ẋ, t) + x, by
making use of the time differentiation available in the input connections to the
neural network and adding time as an additional input, the latter either directly
or via a time dependent vector function u = u(t). Next closing the feedback
connections for x to obtain f (x, ẋ, t) + x ≡ x completes the implicit system
equivalent to the state equation f (x, ẋ, t) = 0 that was to be modelled. Any
separate output equations of the general form y = G (x,u, u̇), can similarly be
accounted for and included in the neural network.



Neural Networks for Device and Circuit Modelling 5

with corresponding instances of F (ik), while the (bivariate) multiplication of
two sub-expressions is easily mapped to a neural (sub)network through a lin-
ear combination of scalar squaring functions as in xy = 1

4 [(x+y)2− (x−y)2],
using two instances of F (ik) for the squaring operation. One can apply these
basic mappings to create templates manually, but one can also devise a gen-
eral parser for automatically mapping differential-algebraic systems of equa-
tions onto exactly equivalent dynamic neural networks.

After the optional initialization phase, where topologies and parameters
are set through a template containing a priori modelling knowledge, the ac-
tual optimization (”learning”) starts. This involves a continuous optimization
algorithm for minimizing a cost function for the model error w.r.t. the sup-
plied behavioural data. This data in turn can be a mixture of DC, time do-
main and frequency domain data. The latter may include scatter parameters
obtained from small signal AC analysis or measurements. Many optimization
algorithms, such as conjugate gradient and BFGS, need the gradient of the
cost function, and this implies the use of DC sensitivity, transient sensitivity
and AC sensitivity. A basic time integration algorithm such as Backward Eu-
ler can be used for the discretized transient analysis and transient sensitivity.
Higher order algorithms may be applied for greater simulation efficiency at
the expense of increased algorithmic complexity.

4 Using A Priori Knowledge—An Example

To illustrate the use of a priori knowledge in macro-modelling a complex
circuit by means of dynamic neural networks, we will consider the folding
part of a folding AD converter designed within Philips. This circuit block has
one input and 32 outputs. Within the operating range of interest, the DC
output of each of these outputs is approximately sinusoidal as a function of
the input. Different outputs differ only by subsequent phase steps of π/32.
Therefore, we can make use of sin(x+φi) = c1isin(x) + c2isin(π/2−x) with
c1i = cos(φi), c2i = sin(φi), to write all the DC outputs as linear combinations
of just two instances of sine functions. Next, the neural network of choice
was correspondingly initialized as a 1-2-32 network, with two instances of
F (i1)(si1, δi1) = sin(2πsi1) in the single ”hidden” layer k = 1, and the identity
functions F (i2)(si2, δi2) = si2 for the 32 outputs in layer k = 2. The neural
network topology is illustrated in Fig. 2.

The initial values for τ1,ik were initially all identical and estimated from
graphical inspection of the high-frequency roll-off of the transistor-level cir-
cuit behaviour. The initial values for τ2,ik were based on those for τ1,ik while
ensuring a small initial quality factor Q� 1 for each neuron. The details of
setting proper values for the weights and offsets will be omitted here. Through
subsequent optimization with our neural modelling software, the timing pa-
rameters were readily adapted for a much better fit to the actual circuit
response curves. The final result of neural network training is illustrated in



6 Peter B.L. Meijer

Fig. 2. Neural network topology for 1-2-32 network.

Fig. 3 where model behaviour and circuit behaviour (”Target output”) are
shown for one of the 32 outputs (all outputs gave comparable results), and
using a sinusoidal time-dependent input signal—which had also been used in
the training phase2. The higher frequencies in the output signal are the result
of the input signal amplitude spanning several periods of the approximately
sinusoidal DC response. The model accurately represents the high-frequency
roll-off, which causes the non-constant envelope in the output signal, with
smaller excursions at the higher frequencies.

The original circuit block contained about five hundred transistors, nor-
mally simulated using advanced analog CAD device models, while the neural
model now only needs two sine functions and 32 simple linear combinations
of these, plus low-order linear differential equations to account for the dy-
namic behaviour. The computational complexity was therefore lowered by
several orders of magnitude, and depending on the simulator used, simulation
speedups of two or three orders of magnitude were obtained for simulating
the model versus the circuit block. The differential-algebraic equations and
parameters of any neural model can be automatically mapped to the syntax
supported by the preferred analog circuit simulator. For example, the neuron
body as specified in Eq. (1) can be rewritten and translated into correspond-
ing VHDL-AMS code like

2 In general one should run a cross-validation with data that was not used in the
training in order to reduce the risk of accidental over-fitting.



Neural Networks for Device and Circuit Modelling 7

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

0 5e-08 1e-07 1.5e-07 2e-07 2.5e-07 3e-07 3.5e-07 4e-07 4.5e-07 5e-07

V
ol

ta
ge

 (
V

)

Time (s)

Neural model (1 input, 32 outputs) of parallel folding AD converter block

Target output 0
Model output 0

Input

Fig. 3. Simulation with original circuit and neural model.

PACKAGE BODY soma_pkg IS

USE IEEE.MATH_REAL.all;

-- DC nonlinearity selection and function evaluation
FUNCTION somadc(ftype: INTEGER; s, delta: REAL) RETURN REAL IS

VARIABLE f: REAL;
BEGIN

CASE ftype IS
WHEN 0 => f := s;
WHEN 5 => f := sin(math_2_pi*s);
WHEN OTHERS => RETURN 0.0;
END CASE;
RETURN f;

END somadc
END soma_pkg;

ENTITY dynsoma IS
GENERIC (ftype: INTEGER; delta, tau1, tau2: REAL);
PORT (TERMINAL INA, OUTA, REF: ELECTRICAL);

END ENTITY dynsoma;

ARCHITECTURE soma OF dynsoma IS
TERMINAL AUX: ELECTRICAL;
QUANTITY s ACROSS INA TO REF; -- Weighted sum s
QUANTITY x ACROSS AUX TO REF; -- Auxiliary variable
QUANTITY y ACROSS iout THROUGH OUTA TO REF; -- Neuron output y

BEGIN
x == tau1 * y’dot;
y == somadc(ftype,s,delta) - x - tau2/tau1 * x’dot;

END ARCHITECTURE soma;



8 Peter B.L. Meijer

where the function type ftype was used to specify what function F should be
used in the folding AD converter model. A different description is used for
model instances with zero-valued τ1. Similarly, model code can be generated
for Verilog-AMS or any other sufficiently rich simulation or programming lan-
guage. Consistency among models in different simulation languages is always
ensured through the automatic mapping by model generators, which all use
the same network topology and parameter set.

5 Conclusions

Dynamic neural networks can be used for a wide range of device and circuit
modelling applications. The generalized formalism allows for a hybrid mod-
elling approach where existing knowledge can be incorporated before starting
the general optimization or learning phase. This approach can help to trade
off the respective strengths and weaknesses of physical modelling and auto-
matic black-box behavioural modelling.

References

1. K.-I. Funahashi, “On the Approximate Realization of Continuous Mappings by
Neural Networks,” Neural Networks, Vol. 2, pp. 183-192, 1989.

2. K. Hornik, M. Stinchcombe and H. White, “Multilayer Feedforward Networks
are Universal Approximators,” Neural Networks, Vol. 2, pp. 359-366, 1989.

3. M. Leshno, V. Y. Lin, A. Pinkus and S. Schocken, “Multilayer Feedforward
Networks With a Nonpolynomial Activation Function Can Approximate Any
Function,” Neural Networks, Vol. 6, pp. 861-867, 1993.

4. P. B. L. Meijer, “Neural Network Applications in Device and Circuit Modelling
for Circuit Simulation,” Ph.D. thesis, Eindhoven University of Technology, May
2, 1996.

5. P. B. L. Meijer, “Signal generator for modelling dynamical system behaviour,”,
U.S. patent, No. 5790757, August 4, 1998.

6. D. E. Rumelhart and J. L. McClelland, Eds., Parallel Distributed Processing,
Explorations in the Microstructure of Cognition. Vols. 1 and 2. Cambridge, MA:
MIT Press, 1986.


