
Neural Network Applications in

Device and Subcircuit Modelling

for Circuit Simulation

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Meijer, P.B.L.

Neural Network Applications in
Device and Subcircuit Modelling
for Circuit Simulation
Proefschrift Technische Universiteit Eindhoven,
- Met lit. opg., - Met samenvatting in het Nederlands.
ISBN 90-74445-26-8
Trefw.: IC design, modelling, neural networks, circuit simulation.

The work described in this thesis has been carried out at the Philips Research Laboratories
in Eindhoven, The Netherlands, as part of the Philips Research programme.

c© Philips Electronics N.V. 2003
All rights are reserved. Reproduction in whole or in part is

prohibited without the written consent of the copyright owner.

Neural Network Applications in

Device and Subcircuit Modelling

for Circuit Simulation

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof.dr. J.H. van Lint,
voor een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen op
donderdag 2 mei 1996 om 16.00 uur

door

Peter Bartus Leonard Meijer

geboren te Sliedrecht

Dit proefschrift is goedgekeurd door de promotoren:

prof.Dr.-Ing. J.A.G. Jess

prof.dr.ir. W.M.G. van Bokhoven

CONTENTS v

Contents

1 Introduction 1

1.1 Modelling for Circuit Simulation . 3

1.2 Physical Modelling and Table Modelling . 5

1.3 Artificial Neural Networks for Circuit Simulation 7

1.4 Potential Advantages of Neural Modelling 11

1.5 Overview of the Thesis . 15

2 Dynamic Neural Networks 17

2.1 Introduction to Dynamic Feedforward Neural Networks 17

2.1.1 Electrical Behaviour and Dynamic Feedforward Neural Networks . . 17

2.1.2 Device and Subcircuit Models with Embedded Neural Networks . . . 19

2.2 Dynamic Feedforward Neural Network Equations 21

2.2.1 Notational Conventions . 21

2.2.2 Neural Network Differential Equations and Output Scaling 24

2.2.3 Motivation for Neural Network Differential Equations 25

2.2.4 Specific Choices for the Neuron Nonlinearity F 28

2.3 Analysis of Neural Network Differential Equations 33

2.3.1 Solutions and Eigenvalues . 33

2.3.2 Stability of Dynamic Feedforward Neural Networks 36

2.3.3 Examples of Neuron Soma Response to Net Input sik(t) 37

2.4 Representations by Dynamic Neural Networks 40

2.4.1 Representation of Quasistatic Behaviour 40

2.4.2 Representation of Linear Dynamic Systems 42

2.4.2.1 Poles of H(s) . 43

2.4.2.2 Zeros of H(s) . 45

2.4.2.3 Constructing H(s) from H(s) 47

vi CONTENTS

2.4.3 Representations by Neural Networks with Feedback 48

2.4.3.1 Representation of Linear Dynamic Systems 48

2.4.3.2 Representation of General Nonlinear Dynamic Systems . . 50

2.5 Mapping Neural Networks to Circuit Simulators 54

2.5.1 Relations with Basic Semiconductor Device Models 54

2.5.1.1 SPICE Equivalent Electrical Circuit for F2 54

2.5.1.2 SPICE Equivalent Electrical Circuit for Logistic Function . 56

2.5.2 Pstar Equivalent Electrical Circuit for Neuron Soma 57

2.6 Some Known and Anticipated Modelling Limitations 59

3 Dynamic Neural Network Learning 63

3.1 Time Domain Learning . 63

3.1.1 Transient Analysis and Transient & DC Sensitivity 63

3.1.1.1 Time Integration and Time Differentiation 63

3.1.1.2 Neural Network Transient & DC Sensitivity 66

3.1.2 Notes on Error Estimation . 69

3.1.3 Time Domain Neural Network Learning 70

3.2 Frequency Domain Learning . 75

3.2.1 AC Analysis & AC Sensitivity . 75

3.2.1.1 Neural Network AC Analysis 76

3.2.1.2 Neural Network AC Sensitivity 79

3.2.2 Frequency Domain Neural Network Learning 81

3.2.3 Example of AC Response of a Single-Neuron Neural Network 84

3.2.4 On the Modelling of Bias-Dependent Cut-Off Frequencies 84

3.2.5 On the Generality of AC/DC Characterization 88

3.3 Optional Guarantees for DC Monotonicity 89

4 Results 93

4.1 Experimental Software . 93

4.1.1 On the Use of Scaling Techniques . 93

4.1.2 Nonlinear Constraints on Dynamic Behaviour 96

4.1.2.1 Scheme for τ1,ik, τ2,ik > 0 and bounded τ1,ik 98

4.1.2.2 Alternative scheme for τ1,ik, τ2,ik ≥ 0 100

4.1.3 Software Self-Test Mode . 101

CONTENTS vii

4.1.4 Graphical Output in Learning Mode 103

4.2 Preliminary Results and Examples . 106

4.2.1 Multiple Neural Behavioural Model Generators 106

4.2.2 A Single-Neuron Neural Network Example 109

4.2.2.1 Illustration of Time Domain Learning 109

4.2.2.2 Frequency Domain Learning and Model Generation 110

4.2.3 MOSFET DC Current Modelling . 113

4.2.4 Example of AC Circuit Macromodelling 117

4.2.5 Bipolar Transistor AC/DC Modelling 123

4.2.6 Video Circuit AC & Transient Macromodelling 125

5 Conclusions 135

5.1 Summary . 135

5.2 Recommendations for Further Research . 137

A Gradient Based Optimization Methods 139

A.1 Alternatives for Steepest Descent . 139

A.2 Heuristic Optimization Method . 141

B Input Format for Training Data 143

B.1 File Header . 143

B.1.1 Optional Pstar Model Generation . 144

B.2 DC and Transient Data Block . 145

B.3 AC Data Block . 146

B.4 Example of Combination of Data Blocks . 148

C Examples of Generated Models 149

C.1 Pstar Example . 149

C.2 Standard SPICE Input Deck Example . 151

C.3 C Code Example . 154

C.4 FORTRAN Code Example . 156

C.5 Mathematica Code Example . 157

D Time Domain Extensions 159

D.1 Generalized Expressions for Time Integration 159

viii CONTENTS

D.2 Generalized Expressions for Transient Sensitivity 162

D.3 Trapezoidal versus Backward Euler Integration 163

Bibliography 167

Summary 171

Samenvatting 173

Curriculum Vitae 175

LIST OF FIGURES ix

List of Figures

1.1 Modelling for circuit simulation. 2

1.2 A 2-4-4-2 feedforward neural network example. 10

2.1 A neural network embedded in a device or subcircuit model. 20

2.2 Notations associated with a dynamic feedforward neural network. 21

2.3 Logistic function. 29

2.4 Neuron nonlinearity F1(sik, δik). 30

2.5 Neuron nonlinearity F2(sik, δik). 32

2.6 Unit step response for various quality factors. 38

2.7 Linear ramp response for various quality factors. 38

2.8 Magnitude of transfer function for various quality factors. 39

2.9 Phase of transfer function for various quality factors. 39

2.10 Representation of a quasistatic model by a feedforward neural network. . . 41

2.11 Parameters for representation of complex-valued zeros. 46

2.12 Representation of linear dynamic systems. 49

2.13 Representation of state of general nonlinear dynamic systems. 51

2.14 Representation of general nonlinear dynamic systems. 52

2.15 Equivalent SPICE circuits for nonlinear functions. 55

2.16 Circuit schematic of electrical circuit corresponding to neuron. 57

3.1 Single-neuron network, frequency transfer 3D parametric plot. 85

3.2 Single-neuron network, frequency transfer 2D plot. 85

3.3 Bias-dependent cut-off frequency: magnitude plot. 87

3.4 Bias-dependent cut-off frequency: phase plot. 87

4.1 Parameter function τ1(σ1,ik , σ2,ik). 97

4.2 Parameter function τ2(σ1,ik , σ2,ik). 97

x LIST OF FIGURES

4.3 Program running in sensitivity self-test mode. 102

4.4 Program running in neural network learning mode. 104

4.5 Neural network mapped onto several circuit simulators. 108

4.6 Single-neuron time domain learning. 110

4.7 Pstar model generation and simulation results. 112

4.8 MOST model 901 dc drain current. 114

4.9 Neural network dc drain current. 114

4.10 Differences between MOST model 901 and neural network. 115

4.11 MOSFET modelling error as a function of iteration count. 117

4.12 Amplifier circuit and neural macromodel. 118

4.13 Macromodelling of circuit admittance, Y11. 120

4.14 Macromodelling of circuit admittance, Y21. 120

4.15 Macromodelling of circuit admittance, Y12. 121

4.16 Macromodelling of circuit admittance, Y22. 121

4.17 Overview of macromodelling errors. 122

4.18 Equivalent circuit for packaged bipolar transistor. 123

4.19 Bipolar transistor modelling error as a function of iteration count. 125

4.20 Neural network model versus bipolar discrete device model. 126

4.21 Block schematic of video filter circuit. 127

4.22 Schematic of video filter section. 128

4.23 A 2-2-2-2-2-2 feedforward neural network. 128

4.24 Schematic of video filter interfacing circuitry. 129

4.25 Schematic of video filter biasing circuitry. 130

4.26 Macromodelling of video filter, time domain overview. 131

4.27 Macromodelling of video filter, enlargement plot 1. 131

4.28 Macromodelling of video filter, enlargement plot 2. 132

4.29 Macromodelling of video filter, frequency domain H00. 132

4.30 Macromodelling of video filter, frequency domain H10. 133

4.31 Video filter modelling error as a function of iteration count. 134

D.1 Backward Euler integration of ẋ = 2π sin(2πt). 164

D.2 Trapezoidal integration of ẋ = 2π sin(2πt). 164

D.3 Backward Euler integration of ẋ = 2π cos(2πt). 165

D.4 Trapezoidal integration of ẋ = 2π cos(2πt). 165

LIST OF TABLES xi

List of Tables

4.1 Overview of neural modelling test-cases. 107

4.2 DC MOSFET modelling results after 2000 iterations. 116

4.3 DC errors of neural models for bipolar transistor. 124

xii LIST OF TABLES

1

Chapter 1

Introduction

In the electronics industry, circuit designers increasingly rely on advanced computer-aided

design (CAD) software to help them with the synthesis and verification of complicated

designs. The main goal of (computer-aided) design and associated software tools is to

exploit the available technology to the fullest. The main CAD problem areas are con-

stantly shifting, partly because of progress within the CAD area, but also because of the

continuous improvements that are being made w.r.t. manufacturing capabilities. With

the progress made in integrating more and more functions in individual VLSI circuits, the

traditional distinction between system and circuit designers now also begins to blur. In

spite of such shifting accents and in spite of many new design approaches and software

tools that have been developed, the analogue circuit simulator is—after several decades

of intense usage—still recognized as one of the key CAD tools of the designer. Exten-

sive rounds of simulations precede the actual fabrication of a chip, with the aim to get

first-time-right results back from the factory.

When dealing with semiconductor circuits and devices, one typically deals with continuous,

but highly nonlinear, multidimensional dynamic systems. This makes it a difficult topic,

and much scientific research is needed to improve the accuracy and efficiency with which

the behaviour of these complicated analogue systems can be analyzed and predicted, i.e.,

simulated. New capabilities have to be developed to master the growing complexity in

both analogue and digital design.

Very often, device-level simulation is simply too slow for simulating a (sub)circuit of any

relevant size, while logic-level or switch-level simulation is considered too inaccurate for

the critical circuit parts, while it is obviously limited to digital-type circuits only. The

analogue circuit simulator often fills the gap by providing good analogue accuracy at a

reasonable computational cost. Naturally, there is a continuous push both to improve the

accuracy obtained from analogue circuit simulation, as well as to increase the capabilities

2 CHAPTER 1. INTRODUCTION

for simulating very large circuits, containing many thousands of devices. These are to

a large extent conflicting requirements, because higher accuracy tends to require more

complicated models for the circuit components, while higher simulation speed favours

the selection of simplified, but less accurate, models. The latter holds despite the general

speed increase of available computer hardware on which one can run the circuit simulation

software.

Apart from the important role of good models for devices and subcircuits, it is also very

important to develop more powerful algorithms for solving the large systems of nonlinear

equations that correspond to electronic circuits. However, in this thesis we will focus

our attention on the development of device and subcircuit models, and in particular on

possibilities to automate model development.

In the following sections, several approaches are outlined that aim at the generation of

device and subcircuit models for use in analogue circuit simulators like Berkeley SPICE,

Philips’ Pstar, Cadence Spectre, Anacad’s Eldo or Analogy’s Saber. A much simplified

overview is shown in Fig. 1.1. Generally starting from discrete behavioural data1, the main

objective is to arrive at continuous models that accurately match the discrete data, and

that fulfill a number of additional requirements to make them suitable for use in circuit

simulators.

1The word “discrete” in this context refers to the fact that devices and subcircuits are normally char-
acterized (measured or simulated) only at a finite set of different bias conditions, time points, and/or
frequencies.

Figure 1.1: Modelling for circuit simulation.

1.1. MODELLING FOR CIRCUIT SIMULATION 3

1.1 Modelling for Circuit Simulation

In modelling for circuit simulation, there are two major applications that need to be

distinguished because of their different requirements. The first modelling application is

to develop efficient and sufficiently accurate device models for devices for which no model

is available yet. The second application is to develop more efficient and still sufficiently

accurate replacement models for subcircuits for which a detailed (network) “model” is often

already available, namely as a description in terms of a set of interconnected transistors and

other devices for which models are already available. Such efficient subcircuit replacement

models are often called macromodels.

In the first application, the emphasis is often less on model efficiency and more on having

something to do accurate circuit-level simulations with. Crudely stated: any model is

better than no model. This holds in particular for technological advancements leading to

new or significantly modified semiconductor devices. Then one will quickly want to know

how circuits containing these devices will perform. At that stage, it is not yet crucial to

have the efficiency provided by existing physical models for other devices—as long as the

differences do not amount to orders of magnitude2. The latter condition usually excludes a

direct interface between a circuit simulator and a device simulator, since the finite-element

approach for a single device in a device simulator typically leads to thousands of nonlinear

equations that have to be solved, thereby making it impractical to simulate circuits having

more than a few transistors.

In the second application, the emphasis is on increasing efficiency without sacrificing too

much accuracy w.r.t. a complete subcircuit description in terms of its constituent com-

ponents. The latter is often possible, because designers strive to create near-ideal, e.g.,

near-linear, behaviour using devices that are themselves far from ideal. For example, a

good linear amplifier may be built from many highly nonlinear bipolar transistors (for the

gain) and linear resistors (for the linearity). Special circuitry may in addition be needed

to obtain a good common mode rejection, a high bandwidth, a high slew rate, low off-

set currents, etc. In other words, designing for seemingly “simple” near-ideal behaviour

usually requires a complicated circuit, but the macromodel for circuit simulation may be

simple again, thereby gaining much in simulation efficiency.

At the device level, it is often possible to obtain discrete behavioural data from measure-

ments and/or device simulations. One may think of a data set containing a list of applied

2An additional reason for the fact that the complexity of transistor-level models does not matter too
much is that with very large circuits, containing many thousands of these devices, the simulation times are
dominated by the algorithms for solving large sets of (non)linear equations: the time spent in evaluating
device models grows only linearly with the number of devices, whereas for most analogue circuit simulators
the time spent in the (non)linear solvers grows superlinearly.

4 CHAPTER 1. INTRODUCTION

voltages and corresponding device currents, but the list could also involve combinations

of fluxes, charges, voltages and currents. Similarly, at the subcircuit level, one obtains

such discrete behavioural data from measurements and/or (sub)circuit simulations. For

analogue circuit simulation, however, a representation of electrical behaviour is needed

that can in principle provide an outcome for any combination of input values, or bias

conditions, where the input variables are usually a set of independent voltages, spanning

a continuous real-valued input space IRn in case of n independent voltages. Consequently,

something must be done to circumvent the discrete nature of the data in a data set.

The general approach is to develop a model that not only closely matches the behaviour as

specified in the data set, but also yields “reasonable” outcomes for situations not specified

in the data set. The vague notion of reasonable outcomes refers to several aspects. For

situations that are close—according to some distance measure—to a situation from the

data set, the model outcomes should also be close to the corresponding outcomes for that

particular situation from the data set. Continuity of a model already implies this property

to some extent, but strictly speaking only for infinitesimal distances. We wouldn’t be

satisfied with a continuous but wildly oscillating interpolating model function. Therefore,

the notion of reasonable outcomes also refers to certain constraints on the number of sign

changes in higher derivatives of a model, by relating them to the number of sign changes

in finite differences calculated from the data set3. Much more can be said about this

topic, but for our purposes it should be sufficient to give some idea of what we mean by

reasonable behaviour.

A model developed for use in a circuit simulator normally consists of a set of analytical

functions that together define the model on its continuous input space IRn. For nu-

merical and other reasons, the combination of functions that constitutes a model should

be “smooth,” meaning that the model and its first—and preferably also higher—partial

derivatives are continuous in the input variables. Furthermore, to incorporate effects like

signal propagation delay, a device model may be constructed from several so-called qua-

sistatic (sub)models.

A quasistatic model consists of functions describing the static behaviour, supplemented by

functions of which the first time derivative is added to the outcomes of the static output

functions to give a first order approximation of the effects of the rate with which input

signals change. For example, a quasistatic MOSFET model normally contains nonlinear

multidimensional functions—of the applied voltages—for the static (dc) terminal currents

and also nonlinear multidimensional functions for equivalent terminal charges [48]; more

details will be given in section 2.4.1. Time derivatives of the equivalent terminal charges

3The so-called variation-diminishing splines are based on considerations like these; see for instance
[11, 39] for some device modelling applications.

1.2. PHYSICAL MODELLING AND TABLE MODELLING 5

form the capacitive currents. Time is not an explicit variable in any of these model func-

tions: it only affects the model behaviour via the time dependence of the input variables

of the model functions. Time may therefore only be explicitly present in the boundary

conditions. This is entirely analogous to the fact that time is not an explicit variable

in, for instance, the laws of Newtonian mechanics or the Maxwell equations, while actual

physical problems in those areas are solved by imposing an explicit time dependence in

the boundary conditions. True delays inside quasistatic models do not exist, because the

behaviour of a quasistatic model is directly and instantaneously determined by the be-

haviour of its input variables4. In other words, a quasistatic model has no internal state

variables (memory variables) that could affect its behaviour. Any charge storage is only

associated with the terminals of the quasistatic model.

The Kirchhoff current law (KCL) relates the behaviour of different topologically neighbour-

ing quasistatic models, by requiring that the sum of the terminal currents flowing towards

a shared circuit node should be zero in order to conserve charge [10]. It is through the cor-

responding differential algebraic equations (DAE’s) that truly dynamic effects like delays

are accounted for. Non-input, non-output circuit nodes are called internal nodes, and a

model or circuit containing internal nodes can represent truly dynamic or non-quasistatic

behaviour, because the charge associated with an internal node acts as an internal state

(memory) variable.

A non-quasistatic model is simply a model that can—via the internal nodes—represent the

non-instantaneous responses that quasistatic models cannot capture by themselves. A set

of interconnected quasistatic models then constitutes a non-quasistatic model through the

KCL equations. Essentially, a non-quasistatic model may be viewed as a small circuit by

itself, but the internal structure of this circuit need no longer correspond to the physical

structure of the device or subcircuit that it represents, because the main purpose of the

non-quasistatic model may be to accurately represent the electrical behaviour, not the

underlying physical structure.

1.2 Physical Modelling and Table Modelling

The classical approach to obtain a suitable compact model for circuit simulation has

been to make use of available physical knowledge, and to forge that knowledge into a

4Phase shifts are modelled to some extent by quasistatic models. For instance, with a quasistatic
MOSFET model, the capacitive currents correspond to the frequency-dependent imaginary parts of current
phasors in a small-signal frequency domain representation, while the first partial derivatives of the static
currents correspond to the real parts of the small-signal response. The latter are equivalent to a matrix
of (trans)conductances. The real and imaginary parts together determine the phase of the response w.r.t.
an input signal.

6 CHAPTER 1. INTRODUCTION

numerically well-behaved model. A monograph on physical MOSFET modelling is for

instance [48]. The Philips’ MOST model 9 and bipolar model MEXTRAM are examples

of advanced physical models [21]. The relation with the underlying device physics and

physical structure remains a very important asset of such hand-crafted models. On the

other hand, a major disadvantage of physical modelling is that it usually takes years to

develop a good model for a new device. That has been one of the major reasons to explore

alternative modelling techniques.

Because of many complications in developing a physical model, the resulting model often

contains several constructions that are more of a curve-fitting nature instead of being based

on physics. This is common in cases where analytical expressions can be derived only for

idealized asymptotic behaviour occurring deep within distinct operating regions. Tran-

sition regions in multidimensional behaviour are then simply—but certainly not easily—

modelled by carefully designed transition functions for the desired intermediate behaviour.

Consequently, advanced physical models are in practice at least partly phenomenological

models in order to meet the accuracy and smoothness requirements. Apparently, the phe-

nomenological approach offers some advantages when pure physical modelling runs into

trouble, and it is therefore logical and legitimate to ask whether a purely phenomenological

approach would be feasible and worthwhile. Phenomenological modelling in its extreme

form is a kind of black-box modelling, giving an accurate representation of behaviour

without knowing anything about the causes of that behaviour.

Apart from using physical knowledge to derive or build a model, one could also apply

numerical interpolation or approximation of discrete data. The merits of this kind of black-

box approach, and a number of useful techniques, are described in detail in [11, 38, 39].

The models resulting from these techniques are called table models. A very important

advantage of table modelling techniques is that one can in principle obtain a quasistatic

model of any required accuracy by providing a sufficient amount of (sufficiently accurate)

discrete data. Optimization techniques are not necessary—although optimization can be

employed to further improve the accuracy. Table modelling can be applied without the risk

of finding a poor fit due to some local minimum resulting from optimization. However, a

major disadvantage is that a single quasistatic model cannot express all kinds of behaviour

relevant to device and subcircuit modelling.

Table modelling has so far been restricted to the generation of a single quasistatic model

of the whole device or subcircuit to be modelled, thereby neglecting the consequences

of non-instantaneous response. Furthermore, for rather fundamental reasons, it is not

possible to obtain even low-dimensional interpolating table models that are both infinitely

1.3. ARTIFICIAL NEURAL NETWORKS FOR CIRCUIT SIMULATION 7

smooth (infinitely differentiable, i.e., C∞) and computationally efficient5. In addition, the

computational cost of evaluating the table models for a given input grows exponentially

with the number of input variables, because knowledge about the underlying physical

structure of the device is not exploited in order to reduce the number of relevant terms

that contain multidimensional combinations of input variables6.

Hybrid modelling approaches have been tried for specific devices, but this again in-

creases the time needed to model new devices, because of the re-introduction of rather

device-specific physical knowledge. For instance, in MOSFET modelling one could apply

separate—nested—table models for modelling the dependence of the threshold voltage on

voltage bias, and for the dependence of dc current on threshold and voltage bias. Clearly,

apart from any further choices to reduce the dimensionality of the table models, the in-

troduction of a threshold variable as an intermediate, and distinguishable, entity already

makes this approach rather device-specific.

1.3 Artificial Neural Networks for Circuit Simulation

In recent years, much attention has been paid in applying artificial neural networks to

learn to represent mappings of different sorts. In this thesis, we investigate the possibility

of designing artificial neural networks in such a way, that they will be able to learn to

represent the static and dynamic behaviour of electronic devices and (sub)circuits. Learn-

ing here refers to optimization of the degree to which some desired behaviour, the target

behaviour, is represented. The terms learning and optimization are therefore nowadays of-

ten used interchangeably, although the term learning is normally used only in conjunction

with (artificial) neural networks, because, historically, learning used to refer to behavioural

changes occurring through—synaptic and other—adaptations within biological neural net-

works. The analogy with biology, and its terminology, is simply stretched when dealing

with artificial systems that bear a remote resemblance to biological neural networks.

5A piecewise (segment-wise) description of behaviour allows for the use of simple, in the sense of
computationally inexpensive, interpolating or approximating functions for individual segments of the input
space. Accuracy is controlled by the density of segments, which need not affect the model evaluation time.
However, the values of a simple—e.g., low-order polynomial—C∞ function and its higher order derivatives
will not, or not sufficiently rapidly, drop to constant zero outside its associated segment. To avoid the costly
evaluation of a large number of contributing functions, the contribution of a simple function is in practice
forced to zero outside its associated segment, thereby introducing discontinuities in at least some higher
order derivatives. The latter discontinuities can be avoided by using very special (weighting) functions,
but these are themselves rather costly to evaluate.

6In some table modelling schemes, like those in [38, 39], a priori knowledge about “typical” semicon-
ductor behaviour is used to reduce the amount of discrete data required for an accurate representation,
but that is something entirely distinct from a reduction of the computational complexity of the model
expressions that need to be evaluated. The latter reduction is very hard to achieve without introducing
unwanted discontinuities.

8 CHAPTER 1. INTRODUCTION

As was explained before, in order to model the behavioural consequences of delays within

devices or subcircuits, non-quasistatic (dynamic) modelling is required. This implies the

use of internal nodes with their associated state variables for (leaky) memory. For numeri-

cal reasons, in particular during time domain analysis in a circuit simulator, models should

not only be accurate, but also “smooth,” implying at least continuity of the model and

its first partial derivatives. In order to deal with higher harmonics in distortion analyses,

higher-order derivatives must also be continuous, which is very difficult or costly to obtain

both with table modelling and with conventional physical device modelling.

Furthermore, contrary to the practical situation with table modelling, the best internal

coordinate system for modelling should preferably arise automatically, while fewer restric-

tions on the specification of measurements for device simulations for model input would be

quite welcome to the user: a grid-free approach would make the usage of automatic mod-

elling methods easier, ideally implying not much more than providing measurement data

to the automatic modelling procedure, only ensuring that the selected data set sufficiently

characterizes (“covers”) the device behaviour. Finally, better guarantees for monotonic-

ity, wherever applicable, can also be advantageous, for example in avoiding artefacts in

simulated circuit behaviour.

Clearly, this list of requirements for an automatic non-quasistatic modelling scheme is

ambitious, but the situation is not entirely hopeless. As it turns out, a number of ideas

derived from contemporary advances in neural network theory, in particular the backprop-

agation theory (also called the “generalized delta rule”) for feedforward networks, together

with our recent work on device modelling and circuit simulation, can be merged into a

new and probably viable modelling strategy, the foundations of which are assembled in

the following chapters.

From the recent literature, one may even anticipate that the mainstreams of electronic

circuit theory and neural network theory will in forthcoming decades converge into general

methodologies for the optimization of analogue nonlinear dynamic systems. As a demon-

stration of the viability of such a merger, a new modelling method will be described, which

combines and extends ideas borrowed from methods and applications in electronic circuit

and device modelling theory and numerical analysis [8, 9, 10, 29, 37, 39], the popular error

backpropagation method (and other methods) for neural networks [1, 2, 18, 22, 36, 44, 51],

and time domain extensions to neural networks in order to deal with dynamic systems

[5, 25, 28, 40, 42, 45, 47, 49, 50]. The two most prevalent approaches extend either

the fully connected—except for the often zero-valued self-connections—Hopfield-type net-

works, or the feedforward networks used in backpropagation learning. We will basically

describe extensions along this second line, because the absence of feedback loops greatly

facilitates giving theoretical guarantees on several desirable model(ling) properties.

1.3. ARTIFICIAL NEURAL NETWORKS FOR CIRCUIT SIMULATION 9

An example of a layered feedforward network is shown in the 3D plot of Fig. 1.2. This

kind of network is sometimes also called a multilayer perceptron (MLP) network. Con-

nections only exist between neurons in subsequent layers: subsequent neuron layers are

fully interconnected, but connections among neurons within a layer do not exist, nor are

there any direct connections across layers. This is the kind of network topology that will

be discussed in this thesis, and it can be easily characterized by the number of neurons

in each layer, going from input layer (layer 0) to output layer: in Fig. 1.2, the network

has a 2-4-4-2 topology7, where the network inputs are enforced upon the two rectangular

input nodes shown at the left side. The actual neural processing elements are denoted by

dodecahedrons, such that this particular network contains 10 neurons8. The network in

Fig. 1.2 has two so-called hidden layers, meaning the non-input, non-output layers, i.e.,

layer 1 and 2. The signals in a feedforward neural network propagate from one network

layer to the next. The signal flow is unidirectional: the input to a neuron depends only

on the outputs of neurons in the preceding layer, such that no feedback loops exist in the

network9.

We will consider the network of Fig. 1.2 to be a 4-layer network, thus including the layer

of network inputs in counting layers. There is no general agreement in the literature on

whether or not to count the input layer, because it does not compute anything. Therefore,

one might prefer to call the network of Fig. 1.2 a 3-layer network. On the other hand,

the input layer clearly is a layer, and the number of neural connections to the next layer

grows linearly with the number of network inputs, which makes it convenient to consider

the input layer as part of the neural network. Therefore one should notice that, although in

this thesis the input layer is considered as part of the neural network, a different convention

or interpretation will be found in some of the referenced literature. In many cases we will

try to circumvent this potential source of confusion by specifying the number of hidden

layers of a neural network, instead of specifying the total number of layers.

In this thesis, the number of layers in a feedforward neural network is arbitrary, although

more than two hidden layers are in practice not often used. The number of neurons in each

layer is also arbitrary. The preferred number of layers, as well as the preferred number of

7Occasionally, we will use a set notation, here for instance giving {2, 4, 4, 2} for the 2-4-4-2 topology,
to denote the set of neuron counts for each layer. Using this alternative notation, the “-” separator in
the topology specification is avoided, which could otherwise be confused with a minus in cases where the
neuron counts are given as symbols or expressions instead of as fixed numerical (integer) values.

8Here, and elsewhere in this thesis, we do not count the input nodes as (true) neurons, although the
input nodes could alternatively also be viewed as dummy neurons with enforced output states.

9Only during learning, an error signal—derived from the mismatch between the actual network output
and the target output—also propagates backward through the network, hence the term “backpropagation
learning.” This special kind of “feedback” affects only the regular updating of network parameters, but
not the network behaviour for any given (fixed) set of network parameters. The statement about feedback
loops in the main text refers to networks with fixed parameters.

10 CHAPTER 1. INTRODUCTION

{2, 4, 4, 2}

0

1

2

3Layer

0

1

2

3Layer

{2, 4, 4, 2}

0

1

2

3Layer

0

1

2

3Layer

Figure 1.2: A 2-4-4-2 feedforward neural network example.

neurons in each of the hidden layers, is usually determined via educated guesses and some

trial and error on the problem at hand, to find the simplest network that gives acceptable

performance.

Some researchers create time domain extensions to neural networks via schemes that can

be loosely described as being tapped delay lines (the ARMA model used in adaptive

filtering also belongs to this class), as in, e.g., [41]. That discrete-time approach essen-

tially concerns ways to evaluate discretized and truncated convolution integrals. In our

continuous-time application, we wish to avoid any explicit time discretization in the (finally

resulting) model description, because we later want to obtain a description in terms of—

continuous-time—differential equations. These differential equations can then be mapped

onto equivalent representations that are suitable for use in a circuit simulator, which gen-

erally contains sophisticated methods for automatically selecting appropriate time step

sizes and integration orders. In other words, we should determine the coefficients of a set

of differential equations rather than parameters like delays and tapping weights that have

a discrete-time nature or are associated with a particular pre-selected time discretization.

In order to determine the coefficients of a set of differential equations, we will in fact need

a temporary discretization to make the analysis tractable, but that discretization is not

in any way part of the final result, the neural model.

1.4. POTENTIAL ADVANTAGES OF NEURAL MODELLING 11

1.4 Potential Advantages of Neural Modelling

The following list summarizes and discusses some of the potential benefits that may ideally

be obtained from the new neural modelling approach—what can be achieved in practice

with dynamic neural networks remains to be seen. However, a few of the potential benefits

have already been turned into facts, as will be shown in subsequent sections. It should be

noted, that the list of potential benefits may be shared, at least in part, by other black-box

modelling techniques.

• Neural networks could be used to provide a general link from measurements or device

simulations to circuit simulation. The discrete set of outcomes of measurements or

device simulations can be used as the target data set for a neural network. The neural

network then tries to learn the desired behaviour. If this succeeds, the neural network

can subsequently be used as a neural behavioural model in a circuit simulator after

translating the neural network equations into an appropriate syntax—such as the

syntax of the programming language in which the simulator is itself written. One

could also use the syntax of the input language of the simulator, as discussed in the

next item of this list.

An efficient link, via neural network models, between device simulation and circuit

simulation allows for the anticipation of consequences of technological choices to cir-

cuit performance. This may result in early shifts in device design, processing efforts

and circuit design, as it can take place ahead of actual manufacturing capabilities:

the device need not (yet) physically exist. Neural network models could then con-

tribute to a reduction of the time-to-market of circuit designs using promising new

semiconductor device technologies.

Even though the underlying physics cannot be traced within the black-box neural

models, the link with physics can still be preserved if the target data is generated

by a device simulator, because one can perform additional device simulations to find

out how, for instance, diffusion profiles affect the device characteristics. Then one

can change the (simulated or real) processing steps accordingly, and have the neural

networks adapt to the modified characteristics, after which one can study the effects

on circuit-level simulations.

• Associated with the neural networks, output drivers can be created for automatically

generating models in the appropriate syntax of a set of supported simulators, for

example in the form of user models for Pstar or Saber, equivalent electrical circuits for

SPICE, or in the form of C code for the Cadence Spectre compiled model interface.

Such output drivers will be called model generators. This possibility is discussed in

12 CHAPTER 1. INTRODUCTION

more detail in sections 2.5.1, 2.5.2, 4.2.1, 4.2.2.2 and Appendix C. Because a manual

implementation of a set of model equations is rather error-prone, the automatic

generation of models can help to ensure mutually consistent model implementations

for the various supported simulators. Presently, behavioural model generators for

Pstar and Berkeley SPICE (and therefore also for the SPICE-compatible Cadence

Spectre) already exist. It is a relatively small effort to write other behavioural

model generators once the syntax and interfacing aspects of the target simulator are

thoroughly understood. As soon as a standard AHDL10 appears, it should be no

problem to write a corresponding AHDL model generator.

• Neural networks can be generalized to introduce their application to the automatic

modelling of device and subcircuit propagation delay effects, manifested in output

phase shifts, step responses with ringing effects, opamp slew rates, near-resonant be-

haviour, etc. This implies the requirement for non-quasistatic (dynamic) modelling,

which is a main focus of this thesis.

Not only the ever decreasing characteristic feature sizes in VLSI technology cause

multidimensional interactions that are hard to analyze physically and mathemati-

cally, but also the ever higher frequencies at which these smaller devices are operated

cause multidimensional interactions, which in turn lead to major physical and mathe-

matical modelling difficulties. This happens not only at the VLSI level. For instance,

parasitic inductances and capacitances due to packaging technology become nonneg-

ligible at very high frequencies. For discrete bipolar devices, this is already a serious

problem in practical applications.

At some stage, the physical model, even if one can be derived, may become so

detailed—i.e., contain so much structural information about the device—that the

border between device simulation and circuit simulation becomes blurred, at the

expense of simulation efficiency. Although the mathematics becomes more difficult

and elaborate when more physical high-frequency interactions are incorporated in

the analysis, the actual behaviour of the device or subcircuit does not necessarily

become more complicated. Different physical causes may have similar behavioural

effects, or partly counteract each other, such that a simple(r) equivalent behavioural

model may still exist11.
10AHDL = Analogue Hardware Description Language.
11For example, in deep-submicron semiconductor devices, significant behavioural consequences are

caused by the relative dominance of boundary effects. One has to take into account the fact that the
electrical fields are non-uniform. This makes a local electrical threshold depend on the position within
the device. These multidimensional effects make a thorough mathematical analysis of the overall device
behaviour exceedingly difficult. However, the electrical characteristics of the whole device just become
simpler in the sense that any “sharp” transitions occurring in the nonlinear behaviour of a large device
are now “blurred” by the combined averaging effect of position-dependent internal thresholds. In many

1.4. POTENTIAL ADVANTAGES OF NEURAL MODELLING 13

Neural modelling is not hampered by any complicated causes of behaviour: it just

concerns the accurate representation of behaviour, in a form that is suitable for its

main application area, which in our case is analogue circuit simulation.

• Much more compact models, with higher terminal counts, may be obtained than

would be possible with table models, because model complexity no longer grows

exponentially with the terminal count: the model complexity now typically grows

quadratically with the terminal count12.

• Neural networks can in principle automatically detect structures hidden in the tar-

get data, and exploit these hidden symmetries or constraints for simplification of the

representation, as is done in physical compact modelling. Given a particular neural

network, which can be interpreted as a fixed set of computational resources, the

(re)allocation of these resources takes place through a learning procedure. Thereby,

individual neurons or groups of neurons become dedicated to particular computa-

tional tasks that help to obtain an accurate match to the target data. If a hidden

symmetry exists, this means that some possible behaviour does not occur, and no

neurons will be allocated by a proper learning procedure to non-existent behaviour,

because this would not help to improve accuracy.

• Neural network models can easily be made infinitely differentiable, as is discussed

in section 2.2. This may also be loosely described as making the models infinitely

smooth. This is relevant to, for instance, distortion analyses, because discontinuities

in higher model derivatives can cause higher harmonics of infinite amplitude, which

clearly is unphysical.

Model smoothness is also important for the efficiency of the higher order time inte-

gration schemes of an analogue circuit simulator. The time integration routines in

a circuit simulator typically detect discontinuities of orders that are less than the

integration order being used, and respond by temporarily lowering the integration

order and/or time step size, which causes significant computational overhead during

transient simulations.

• Feedforward neural networks can, under relatively mild conditions, be guaranteed

to preserve monotonicity in the multidimensional static behaviour. This is shown

cases, smooth—at least C1—phenomenological models will have less difficulty with the approximation of
the resulting more gradual transitions in the device characteristics than they would have had with sharp
transitions.

12To be fair, the exponential growth could still be present in the size of the target data set and in the
learning time, because one has to characterize the multidimensional input space of a device or subcircuit.
Although this problem can in a number of cases be alleviated by using a priori knowledge about the
behaviour, it may in certain cases be a real bottleneck in obtaining an accurate neural model.

14 CHAPTER 1. INTRODUCTION

in section 3.3, and subsequently applied to MOSFET modelling in section 4.2.3.

With contemporary physical models, it is generally no longer possible to guarantee

monotonicity, due to the complexity of the mathematical analysis needed to prove

monotonicity. It is an important property, however, because many devices are known

to have monotonic characteristics. A nonmonotonic model for such a device may

yield multiple spurious solutions for the circuit in which it is applied and it may lead

to nonconvergence even during time domain circuit simulation.

The monotonicity guarantee for neural networks can be maintained for highly non-

linear multidimensional behaviour, which so far has not been possible with table

models without requiring excessive amounts of data [39]. Furthermore, the mono-

tonicity guarantee is optional, such that nonmonotonic static behaviour can still be

modelled, as is illustrated in section 4.2.1.

• Stability13 of feedforward neural networks can be guaranteed. The stability of feed-

forward neural networks depends solely on the stability of its individual neurons.

If all neurons are stable, then the feedforward network is also stable. Stability of

individual neurons is ensured through parameter constraints imposed upon their

associated differential equations, as shown in sections 2.3.2 and 4.1.2.

• Feedforward neural networks can be defined in such a way that it can be guaranteed

that the networks each have a unique behaviour for a given set of (time-dependent)

inputs. This implies, as is shown in section 3.1.1.1, that the corresponding neu-

ral models have unique solutions in both dc and transient analysis when they are

applied in circuit simulation. This property can help the nonlinear solver of a cir-

cuit simulator to converge and it also helps to avoid spurious solutions to circuit

behaviour.

On the other hand, it is at the same time a limitation to the modelling capabilities of

these neural networks, for there may be situations in which one wants to model the

multiple solutions in the behaviour of a resistive device or subcircuit, for example

when modelling a flip-flop. So it must be a deliberate choice, made to help with

the modelling of a restricted class of devices and subcircuits. In this thesis, the

uniqueness restriction is accepted in order to make use of the associated desirable

mathematical and numerical properties.

• Feedforward neural networks can be defined in such a way, that the static behaviour

of a network, i.e., the dc solution, can be obtained from nonlinear but explicit formu-
13Stability here refers to the system property that for times going towards infinity, and for constant

inputs to the system under consideration, and for any starting condition, the system moves into a static
equilibrium state, which is also called a stable focus [10].

1.5. OVERVIEW OF THE THESIS 15

las, thereby avoiding the need for an iterative solver for implicit nonlinear equations.

Therefore, convergence problems cannot occur during the dc analysis of neural net-

works with enforced inputs14. Simulation times are in general also significantly

reduced by avoiding the need for iterative nonlinear solvers.

• The learning procedures for neural networks can be made flexible enough to allow the

grid-free specification of multidimensional input data. This makes the adaptation

and use of existing measurement or device simulation data formats much easier. The

proper internal coordinate system is in principle discovered automatically, instead

of being specified by the user (as is required for table models)15.

• Neural networks may also find applications in the macromodelling of analogue non-

linear dynamic systems, e.g., subcircuits and standard cells. Resulting behavioural

models may replace subcircuits in simulations that would otherwise be too time-

consuming to perform with an analogue circuit simulator like Pstar. This could

effectively result in a form of mixed-level simulation with preservation of loading

effects and delays, without requiring the tight integration of two or more distinct

simulators.

1.5 Overview of the Thesis

The general heading of this thesis is to first define a class of dynamic neural networks,

then to derive a theory and algorithms for training these neural networks, subsequently

to implement the theory and algorithms in software, and then to apply the software to

a number of test-cases. Of course, this idealized logical structure does not quite reflect

the way the work is done, in view of the complexity of the subject. In reality one has to

consider, as early as possible, aspects from all these stages at the same time, in order to

increase the probability of obtaining a practical compromise between the many conflict-

ing requirements. Moreover, insights gained from software experiments may in a sense

“backpropagate” and lead to changes even in the neural network definitions.
14This will hold for our neural network simulation and optimization software, which makes use of ex-

pressions like those given in section 3.1.1.1, Eq. (3.6). If behavioural models are generated for another
simulator, it still depends upon the algorithms of this other simulator whether convergence problems can
occur: it might try to solve an explicit formula implicitly, since we cannot force another simulator to be
“smart.” Furthermore, if some form of feedback is added to the neural networks, the problems associated
with nonlinear implicit equations generally return, because the values of network input variables involved
in the feedback will have to be solved from nonlinear implicit equations.

15An exception still remains when guarantees for monotonicity are required. Monotonicity at all points
and in each of the coordinate directions of one selected coordinate system, does not imply monotonicity in
each of the directions of another coordinate system. Monotonicity is therefore in principle coupled to the
particular choice of a coordinate system, as will be briefly discussed later on, in section 3.3, for a bipolar
modelling example.

16 CHAPTER 1. INTRODUCTION

In chapter 2, the equations for dynamic feedforward neural networks are defined and

discussed. The behaviour of individual neurons is analyzed in detail. In addition, the

representational capabilities of these networks are considered, as well as some possibili-

ties to construct equivalent electrical circuits for neurons, thereby allowing their direct

application in analogue circuit simulators.

Chapter 3 shows how the definitions of chapter 2 can be used to construct sensitivity-

based learning procedures for dynamic feedforward neural networks. The chapter has

two major parts, consisting of sections 3.1 and 3.2. Section 3.1 considers a representa-

tion in the time domain, in which neural networks may have to learn step responses or

other transient responses. Section 3.2 shows how the definitions of chapter 2 can also be

employed in a small-signal frequency domain representation, by deriving a correspond-

ing sensitivity-based learning approach for the frequency domain. Time domain learning

can subsequently be combined with frequency domain learning. As a special topic, sec-

tion 3.3 discusses how monotonicity of the static response of feedforward neural networks

can be guaranteed via parameter constraints during learning. The monotonicity property

is particularly important for the development of suitable device models for use in analogue

circuit simulators.

Chapter 4, section 4.1, discusses several aspects concerning an experimental software im-

plementation of the time domain learning and frequency domain learning techniques of

the preceding chapter. Section 4.2 then shows a number of preliminary modelling results

obtained with this experimental software implementation. The neural modelling exam-

ples involve time domain learning and frequency domain learning, and use is made of

the possibility to automatically generate analogue behavioural (macro)models for circuit

simulators.

Finally, chapter 5 draws some general conclusions and sketches recommended directions

for further research.

17

Chapter 2

Dynamic Neural Networks

In this chapter, we will define and motivate the equations for dynamic feedforward neural

networks. The dynamical properties of individual neurons are analyzed in detail, and

conditions are derived that guarantee stability of the dynamic feedforward neural networks.

Subsequently, the ability of the resulting networks to represent various general classes of

behaviour is discussed. The other way around, it is shown how the dynamic feedforward

neural networks can themselves be represented by equivalent electrical circuits, which

enables the use of neural models in existing analogue circuit simulators. The chapter ends

with some considerations on modelling limitations.

2.1 Introduction to Dynamic Feedforward Neural Networks

Dynamic feedforward neural networks are conceived as mathematical constructions, inde-

pendent of any particular physical representation or interpretation. This section shows

how these artificial neural networks can be related to device and subcircuit models that

involve physical quantities like currents and voltages.

2.1.1 Electrical Behaviour and Dynamic Feedforward Neural Networks

In general, an electronic circuit consisting of arbitrarily controlled elements can be math-

ematically described by a system of nonlinear first order differential equations1

f (x(t) ,
dx(t)

dt
,p) = 0 (2.1)

1Actually, we may have a system of differential algebraic equations (DAE’s), characterized by the
fact that not all equations are required to contain differential terms. However, one can also view such an
algebraic equation as a special case of a differential equation, involving differential terms that are multiplied
by zero-valued coefficients. Therefore, we will drop the adjective “algebraic” for brevity.

18 CHAPTER 2. DYNAMIC NEURAL NETWORKS

with f a vector function. The real-valued2 vector x can represent any mixture of electrical

input variables, internal variables and output variables at times t. An electrical variable

can be a voltage, a current, a charge or a flux. The real-valued vector p contains all the

circuit and device parameters. Parameters may represent component values for resistors,

inductors and capacitors, or the width and length of MOSFETs, or any other quantities

that are fixed by the particular choice of circuit design and manufacturing process, but

that may, at least in principle, be adapted to optimize circuit or device performance.

Constants of nature, such as the speed of light or the Boltzmann constant, are therefore

not considered as parameters. It should perhaps be explicitly stated, that in this thesis

a parameter is always considered to be constant, except for a possible regular updating

as part of an optimization procedure that attempts to obtain a desired behaviour for the

variables of a system by searching for a suitable set of parameter values.

For practical reasons, such as the crucial model simplicity (to keep the model evaluation

times within practical bounds), and to be able to give under certain conditions guarantees

on some desirable properties (uniqueness of solution, monotonicity, stability, etc.), we will

move away from the general form of Eq. (2.1), and restrict the dependencies to those of lay-

ered feedforward neural networks, excluding interactions among different neurons within

the same layer. Two subsequent layers are fully interconnected. The feedforward ap-

proach allows the definition of nonlinear networks that do not require an iterative method

for solving state variables from sets of nonlinear equations (contrary to the situation with

most nonlinear electronic circuits), and the existence of a unique solution of network state

variables for a given set of network inputs can be guaranteed. As is conventional for

feedforward networks, neurons receive their input only from outputs in the layer imme-

diately preceding the layer in which they reside. A net input to a neuron is constructed

as a weighted sum, including an offset, of values obtained from the preceding layer, and a

nonlinear function is applied to this net input.

However, instead of using only a nonlinear function of a net input, each neuron will now

also involve a linear differential equation with two internal state variables, driven by a

nonlinear function of the net input, while the net input itself will include time derivatives

of outputs from the preceding layer. This enables each single neuron, in concert with its

input connections, to represent a second order band-pass type filter, which makes even

individual neurons very powerful building blocks for modelling. Together these neurons

constitute a dynamic feedforward neural network, in which each neuron still receives input

only from the preceding layer. In our new neural network modelling approach, dynamic

2In the remainder of this thesis, it will very often not be explicitly specified whether a variable, param-
eter or function is real-valued, complex-valued or integer-valued. This omission is mainly for reasons of
readability. The appropriate value type should generally be apparent from the context, application area,
or conventional use in the literature.

2.1. INTRODUCTION TO DYNAMIC FEEDFORWARD NEURAL NETWORKS 19

semiconductor device and subcircuit behaviour is to be modelled by this kind of neural

network.

The design of neurons as powerful building blocks for modelling implies that we deliber-

ately support the grandmother-cell concept3 in these networks, rather than strive for a

distributed knowledge representation for (hardware) fault-tolerance. Since fault-tolerance

is not (yet) an issue in software-implemented neural networks, this is not considered a

disadvantage for our envisioned software applications.

2.1.2 Device and Subcircuit Models with Embedded Neural Networks

The most common modelling situation is that the terminal currents of an electrical device

or subcircuit are represented by the outcomes of a model that receives a set of independent

voltages as its inputs. This also forms the basis for one of the most prevalent approaches

to circuit simulation: Modified Nodal Analysis (MNA) [10]. Less common situations,

such as current-controlled models, can still be dealt with, but they are usually treated

as exceptions. Although our neural networks do not pertain to any particular choice

of physical quantities, we will generally assume that a voltage-controlled model for the

terminal currents is required when trying to represent an electronic device or subcircuit

by a neural model.

A notable exception is the representation of combinatorial logic, where the relevant inputs

and outputs are often chosen to be voltages on the subcircuit terminals in two disjoint

sets: one set of terminals for the inputs, and another one for the outputs. This choice

is in fact less general, because it neglects loading effects like those related to fan-in and

fan-out. However, the representation of combinatorial logic is not further pursued in this

thesis, because our main focus is on learning truly analogue behaviour rather than on

constructing analogue representations of essentially digital behaviour4.

The independent voltages of a voltage-controlled model for terminal currents may be

defined w.r.t. some reference terminal. This is illustrated in Fig. 2.1, where n voltages

w.r.t. a reference terminal REF form the inputs for an embedded dynamic feedforward

neural network. The outputs of the neural network are interpreted as terminal currents,

and the neural network outputs are therefore assigned to corresponding controlled current
3In the neural network literature, this refers to the situation that a single neuron performs a specific

“task”—such as recognizing one’s grandmother. Removal of this neuron makes the neural network fail on
this task. In a so-called distributed representation, however, the removal of any single neuron will have
little effect on the performance of the neural network on any of its tasks.

4The design of constructive, i.e., learning-free, procedures that map for instance a logic sp-form [6, 31]
onto a corresponding topology and parameter set of an equivalent feedforward neural network is certainly
possible, including a rough representation of propagation delay, but a full description would require a
rather extensive introduction to the terminology of logic synthesis. That in turn would shift the emphasis
of this thesis too much away from the time domain and frequency domain learning techniques.

20 CHAPTER 2. DYNAMIC NEURAL NETWORKS

sources of the model for the electrical behaviour of an (n+1)-terminal device or subcircuit.

Only n currents need to be explicitly modelled, because the current through the single

remaining (reference) terminal follows from the Kirchhoff current law as the negative sum

of the n explicitly modelled currents.

At first glance, Fig. 2.1 may seem to represent a system with feedback. However, this is not

really the case, since the information returned to the terminals concerns a physical quantity

(current) that is entirely distinct from the physical quantity used as input (voltage). The

input-output relation of different physical quantities may be associated with the same set

of physical device or subcircuit terminals, but this should not be confused with feedback

situations where outputs affect the inputs because they refer to, or are converted into,

the same physical quantities. In the case of Fig. 2.1, the external voltages may be set

irrespective of the terminal currents that result from them.

In spite of the reduced model (evaluation) complexity, the mathematical notations in the

following sections can sometimes become slightly more complicated than needed for a

general network description, due to the incorporation of the topological restrictions of

feedforward networks in the various derivations.

Figure 2.1: A dynamic feedforward neural network embedded in a voltage-controlled
device or subcircuit model for terminal currents.

2.2. DYNAMIC FEEDFORWARD NEURAL NETWORK EQUATIONS 21

2.2 Dynamic Feedforward Neural Network Equations

2.2.1 Notational Conventions

Before one can write down the equations for dynamic feedforward neural networks, one

has to choose a set of labels or symbols with which to denote the various components,

parameters and variables of such networks. The notations in this thesis closely follow and

extend the notations conventionally used in the literature on static feedforward neural

networks. This will facilitate reading and make the dynamic extensions more apparent

for those who are already familiar with the latter kind of networks. The illustration of

Fig. 2.2 can be helpful in keeping track of the relation between the notations and the neural

network components. The precise purpose of some of the notations will only become clear

in subsequent sections.

A feedforward neural network will be characterized by the number of layers and the number

of neurons per layer. Layers are counted starting with the input layer as layer 0, such that

a network with output layer K involves a total of K + 1 layers (which would have been

K layers in case one prefers not to count the input layer). Layer k by definition contains

Nk neurons, where k = 0, · · · ,K. The number Nk may also be referred to as the width of

layer k. Neurons that are not directly connected to the inputs or outputs of the network

belong to a so-called hidden layer, of which there are K − 1 in a (K + 1)-layer network.

Network inputs are labeled as x(0) ≡ (x(0)
1 , · · · , x(0)

N0
)T, and network outputs as x(K) ≡

Figure 2.2: Some notations associated with a dynamic feedforward neural network.

22 CHAPTER 2. DYNAMIC NEURAL NETWORKS

(x(K)
1 , · · · , x(K)

NK
)T.

The neuron output vector yk ≡ (y1,k , · · · , yNk,k)T represents the vector of neuron outputs

for layer k, containing as its elements the output variable yi,k for each individual neuron

i in layer k. The network inputs will be treated by a dummy neuron layer k = 0, with

enforced neuron j outputs yj,0 ≡ x
(0)
j , j = 0, · · · , N0. This sometimes helps to simplify

the notations used in the formalism. However, when counting the number of neurons in a

network, we will not take the dummy input neurons into account.

We will apply the convention that separating commas in subscripts are usually left out

if this does not cause confusion. For example, a weight parameter wi,j,k may be written

as wijk, which represents a weighting factor for the connection from5 neuron j in layer

k − 1 to neuron i in layer k. Separating commas are normally required with numerical

values for subscripts, in order to distinguish, for example, w12,1,3 from w1,21,3 and w1,2,13 —

unless, of course, one has advance knowledge about topological restrictions that exclude

the alternative interpretations.

A weight parameter wijk sets the static connection strength for connecting neuron j in

layer k− 1 with neuron i in layer k, by multiplying the output yj,k−1 by the value of wijk.

An additional weight parameter vijk will play the same role for the frequency dependent

part of the connection strength, which is an extension w.r.t. static neural networks. It is a

weighting factor for the rate of change in the output of neuron j in layer k−1, multiplying

the time derivative dyj,k−1/dt by the value of vijk.

In view of the direct association of the extra weight parameter vijk with dynamic be-

haviour, it is also considered to be a timing parameter. Depending on the context of the

discussion, it will therefore be referred to as either a weight(ing) parameter or a timing

parameter. As the notation already suggests, the parameters wijk and vijk are considered

to belong to neuron i in layer k, which is analogous to the fact that much of the weighted

input processing of a biological neuron is performed through its own branched dendrites.

The vector of weight parameters wik ≡ (wi,1,k , · · · , wi,Nk−1,k)T is conventionally used

to determine the orientation of a static hyperplane, by setting the latter orthogonal to

wik. A threshold parameter θik of neuron i in layer k is then used to determine the

position, or offset, of this hyperplane w.r.t. the origin. Separating hyperplanes as given

bywik ·yk−1−θik = 0 are known to form the backbone for the ability to represent arbitrary

static classifications in discrete problems [36], for example occurring with combinatorial

logic, and they can play a similar role in making smooth transitions among (qualitatively)

5This differs only slightly from the convention in the neural network literature, where a weight wij
usually represents a connection from a neuron j to a neuron i in some layer. Not specifying which layer is
often a cause of confusion, especially in textbooks that attempt to explain backpropagation theory, because
one then tries to put into words what would have been far more obvious from a well-chosen notation.

2.2. DYNAMIC FEEDFORWARD NEURAL NETWORK EQUATIONS 23

different operating regions in analogue applications.

The (generally) nonlinear nature of a neuron will be represented by means of a (generally)

nonlinear function F , which will normally be assumed to be the same function for all

neurons within the network. However, when needed, this is most easily generalized to

different functions for different neurons and different layers, by replacing any occurrence

of F by F (ik) in every formula in the remainder of this thesis, because in the mathematical

derivations the F always concerns the nonlinearity of one particular neuron i in layer k:

it always appears in conjunction with an argument sik that is unique to neuron i in

layer k. For these reasons, it seemed inappropriate to further complicate, or even clutter,

the already rather complicated expressions by using neuron-specific superscripts for F .

However, it is useful to know that a purely linear output layer can be created6, since that

is the assumption underlying a number of theorems on the representational capabilities of

feedforward neural networks having a single hidden layer [19, 23, 34].

The function F is for neuron i in layer k applied to a weighted sum sik of neuron outputs

yj,k−1 in the preceding layer k− 1. The weighting parameters wijk, vijk and threshold pa-

rameter θik take part in the calculation of this weighted sum. Within a nonlinear function

F for neuron i in layer k, there may be an additional (transition) parameter δik , which

may be used to set an appropriate scale of change in qualitative transitions in function

behaviour, as is common to semiconductor device modelling7. Thus the application of F
for neuron i in layer k takes the form F(sik, δik), which reduces to F(sik) for functions

that do not depend on δik.

The dynamic response of neuron i in layer k is determined not only by the timing pa-

rameters vijk, but also by additional timing parameters τ1,ik and τ2,ik. Whereas the

contributions from vijk amplify rapid changes in neural signals, the τ1,ik and τ2,ik will

have the opposite effect of making the neural response more gradual, or time-averaged.

In order to guarantee that the values of τ1,ik and τ2,ik will always lie within a certain

desired range, they may themselves be determined from associated parameter functions8

τ1,ik = τ1(σ1,ik , σ2,ik) and τ2,ik = τ2(σ1,ik , σ2,ik). These functions will be constructed in

such a way that no constraints on the (real) values of the underlying timing parameters

σ1,ik and σ2,ik are needed to obtain appropriate values for τ1,ik and τ2,ik.

6Linearity in an output layer with nonlinear neurons can on a finite argument range also be approxi-
mated up any desired accuracy by appropriate scalings of weights and thresholds, but that procedure is
less direct, and it is restricted to mappings with a finite range. The latter restriction will normally not be
a practical problem in modelling physical systems.

7In principle, one could extend this to the use of a parameter vector �ik , but so far a single scalar δik
appeared sufficient for our applications.

8The detailed reasons for introducing these parameter functions are explained further on.

24 CHAPTER 2. DYNAMIC NEURAL NETWORKS

2.2.2 Neural Network Differential Equations and Output Scaling

The differential equation for the output, or excitation, yik of one particular neuron i in

layer k > 0 is given by

τ2(σ1,ik , σ2,ik)
d2yik
dt2

+ τ1(σ1,ik , σ2,ik)
dyik
dt

+ yik = F(sik, δik) (2.2)

with the weighted sum s of outputs from the preceding layer

sik
4
= wik · yk−1 − θik + vik ·

dyk−1

dt

=
Nk−1∑
j=1

wijk yj,k−1 − θik +
Nk−1∑
j=1

vijk
dyj,k−1

dt
(2.3)

for k > 1, and similarly for the neuron layer k = 1 connected to the network input

sik
4
= wik · x(0) − θik + vik ·

dx(0)

dt

=
N0∑
j=1

wij,0 x
(0)
j − θi,0 +

N0∑
j=1

vij,0
dx(0)

j

dt
(2.4)

which, as stated before, is entirely analogous to having a dummy neuron layer k = 0 with

enforced neuron j outputs yj,0 ≡ x
(0)
j . In the following, we will occasionally make use of

this in order to avoid each time having to make notational exceptions for the neuron layer

k = 1, and we will at times refer to Eq. (2.3) even for k = 1.

The net input sik is analogous to the weighted input signal arriving at the cell body, or

soma, of a biological neuron via its branched dendrites, where its value determines whether

or not the neuron will fire a signal through its output, the axon, and at what spike rate.

Eq. (2.2) can therefore be viewed as the mathematical description of the neuron cell body.

In our formalism, we have no analogue of a branched axon, because the branching of the

inputs is sufficiently general for the feedforward network topology that we use9.

9One could alternatively view the set of weights, directed to a given layer and coming from one particular
neuron in the preceding layer, as a branched axon for the output of that particular neuron. Then we would
no longer need the equivalent of dendrites, and we could relabel the weights as belonging to neurons in the
preceding layer. All this would not make any difference to the network functionality: it merely concerns

2.2. DYNAMIC FEEDFORWARD NEURAL NETWORK EQUATIONS 25

Finally, to allow for arbitrary network output ranges—because, normally, nonlinear func-

tions F are used that squash the steady state neuron inputs into a finite output range,

such as [0, 1] or [−1, 1]—the time-dependent outputs yiK of neurons i in the output layer

K yield the network output excitations x(K)
i through a linear scaling transformation

x
(K)
i = αi yiK + βi (2.5)

yielding a network output vector x(K).

There is no fundamental reason why a learning scheme would not yield inappropriate

values for the coefficients of the differential terms in a differential equation, which could

lead to unstable or resonant behaviour, or give rise to still other undesirable kinds of

behaviour. Even if this occurs only during the learning procedure, it may at least slow

down the convergence towards a “reasonable” behaviour, whatever we may mean by that,

but it may also enhance the probability of finding an inappropriate local minimum. To

decrease the probability of such problems, a robust software implementation may actually

employ functions like τ1,ik
4
= τ1(σ1,ik , σ2,ik) and τ2,ik

4
= τ2(σ1,ik , σ2,ik) that have any

of the relevant—generally nonlinear—constraints built into the expressions. As a simple

example, if τ1,ik = σ2
1,ik and τ2,ik = σ2

2,ik, and the neural network tries to learn the

underlying parameters σ1,ik and σ2,ik, then it is automatically guaranteed that τ1,ik and

τ2,ik are not negative. More sophisticated schemes are required in practice, as will be

discussed in section 4.1.2. In the following, the parameter functions τ1(σ1,ik , σ2,ik) and

τ2(σ1,ik , σ2,ik) are often simply denoted by (timing) “parameters” τ1,ik and τ2,ik, but it

must be kept in mind that these are only indirectly, namely via the σ’s, determined in a

learning scheme. Finally, it should be noted that the τ1,ik have the dimension of time, but

the τ2,ik have the dimension of time squared.

2.2.3 Motivation for Neural Network Differential Equations

The selection of a proper set of equations for dynamic neural networks cannot be performed

through a rigid procedure. Several good choices may exist. The final selection made for

this thesis reflects a mixture of—partly heuristic—considerations on desirable properties

and “circumstantial evidence” (more or less in hindsight) for having made a good choice.

Therefore, we will in the following elaborate on some of the additional reasons that led to

the choice of Eqs. (2.2) and (2.3):

the way we wish to denote and distinguish for ourselves the different components of a neural network.

26 CHAPTER 2. DYNAMIC NEURAL NETWORKS

• A nonlinear, typically sigmoid10, function F with at least two identifiable operating

regions provides a general capability for representing or approximating arbitrary

discrete (static) classifications—even for disjoint sets—using a static (dc) feedforward

network and requiring not more than two hidden layers [36].

• A nonlinear, monotonically increasing and bounded continuous function F also pro-

vides a general capability for representing any continuous multidimensional (mul-

tivariate) static behaviour up to any desired accuracy, using a static feedforward

network and requiring not more than one hidden layer [19, 23]. Recently, it has even

been shown that F need only be nonpolynomial in order to prove these representa-

tional capabilities [34]. More literature on the capabilities of neural networks and

fuzzy systems as universal static approximators can be found in [4, 7, 24, 26, 27, 33].

• It will be shown by construction in section 2.4.1, that this ability to represent any

multidimensional static behaviour almost trivially extends to arbitrary quasistatic

behaviour, when using Eqs. (2.2), (2.3) and (2.5), while requiring no more than two

hidden layers.

• The use of an infinitely differentiable, i.e., C∞, function F makes the whole neural

network infinitely differentiable. This is relevant to the accuracy of neural network

models in distortion analyses, but it is also important for the efficiency of the higher

order time integration schemes of an analogue circuit simulator in which the neural

network models will be incorporated.

• A single neuron can already exactly represent the dynamic behaviour of elementary

but fundamental linear electronic circuits like a voltage-driven (unloaded) RC-stage,

or an output-grounded RCR-stage from a ladder network. The heuristic but prag-

matic guideline here is that simple electronic circuits should be representable by

few neurons. If not, it would become doubtful whether more complicated electronic

circuits could be represented efficiently.

• The term with vijk provides the capability for time-differentiation of input signals to

the neuron, thereby amplifying, or “detecting,” rapid changes in the neuron input

signals.

• The terms with wijk and vijk together provide the capability to represent, in a very

natural way, the full complex-valued admittance matrices arising in low-frequency

quasistatic modelling. This ensures that low-frequency modelling nicely fits the

mathematical structure of the neural network, which will generally speed up learning
10A sigmoid function is defined as being a strictly increasing differentiable function with a finite range.

2.2. DYNAMIC FEEDFORWARD NEURAL NETWORK EQUATIONS 27

progress. In electrical engineering, an admittance matrix Y is often written as

Y = G + ωC, where G is a real-valued conductance matrix and C a real-valued

capacitance matrix. The dot-less symbol  is in this thesis used to denote the complex

constant fulfilling 2 = −1. The (angular) frequency is denoted by ω, and the factor

ω then corresponds to time differentiation. Since the number of elements in a

(square) matrix grows quadratically with the size of the matrix, we need a structure

of comparable complexity in a neural network. Only the weight components wijk and

vijk meet this growth in complexity: the wijk can play the role of the conductance

matrix elements (G)ij , while the vijk can do the same for the capacitance matrix

elements (C)ij 11.

• A further reason for the combination of wijk and vijk lies in the fact that it simplifies

the representation of diffusion charges of forward-biased bipolar junctions, in which

the dominant charges are roughly proportional to the dc currents, which themselves

depend on the applied voltage bias in a strongly nonlinear (exponential) fashion. The

total current, consisting of the dc current and the time derivative of the diffusion

charge, is then obtained by first calculating a bias-dependent nonlinear function

having a value proportional to the dc current. In a subsequent neural network layer,

this function is weighted by wijk to add the dc current to the net input of a neuron,

and its time derivative is weighted by vijk to add the capacitive current to the net

input. The resulting total current is transparently copied to the network output

through appropriate parameter settings that linearize the behaviour of the output

neurons. This whole procedure is very similar to the constructive procedure, given

in section 2.4.1, to demonstrate that arbitrary quasistatic models can be represented

by our generalized neural networks.

• The term with τ1,ik provides the capability for time-integration to the neuron,

thereby also time-averaging the net input signal sik. For τ2,ik = 0 and vijk = 0,

this is the same kind of low-pass filtering that a simple linear circuit consisting of a

resistor in series with a capacitor performs, when driven by a voltage source.

• The term with τ2,ik suppresses the terms with vijk for very high frequencies. This

ensures that the neuron (and neural network) transfer will drop to zero for sufficiently

high frequencies, as happens with virtually any physical system.

• If all the τ1,ik and τ2,ik in a neural network are constrained to fulfill τ1,ik > 0 and

τ2,ik > 0, then this neural network is guaranteed to be stable in the sense that the

time-varying parts of the neural network outputs vanish for constant network inputs
11In linear modelling, this applies to a 2-layer linear neural model with voltage inputs and current

outputs, using F(sik) ≡ sik, τ1,ik = τ2,ik = 0 and αi = 1. The θik and βi relate to arbitrary offsets.

28 CHAPTER 2. DYNAMIC NEURAL NETWORKS

and for times going towards infinity. This topic will be covered in more detail in

section 2.3.2.

• Further on, in section 3.1.1.1, we will also show that the choice of Eqs. (2.2) and

(2.3) avoids the need for a nonlinear solver during dc and transient analysis of the

neural networks. Thereby, convergence problems w.r.t. the dynamic behaviour of

the neural networks simply do not exist, while the efficiency is greatly improved by

always having just one “iteration” per time step. These are major advantages over

general circuit simulation of arbitrary systems having internal nodes for which the

behaviour is governed by implicit nonlinear equations.

The complete neuron description from Eqs. (2.2) and (2.3) can act as a (nonlinear)

band-pass filter for appropriate parameter settings: the amplitude of the vijk-terms will

grow with frequency and dominate the wijk- and θik-terms for sufficiently high frequencies.

However, the τ1,ik-term also grows with frequency, leading to a transfer function amplitude

on the order of vijk/τ1,ik, until τ2,ik comes into play and gradually reduces the neuron high-

frequency transfer to zero. A band-pass filter approximates the typical behaviour of many

physical systems, and is therefore an important building block in system modelling. The

non-instantaneous response of a neuron is a consequence of the terms with τ1,ik and τ2,ik.

2.2.4 Specific Choices for the Neuron Nonlinearity F

If all timing parameters in Eqs. (2.2) and (2.3) are zero, i.e., vijk = τ1,ik = τ2,ik = 0, and

if one applies the familiar logistic function L(sik)

F0(sik)
4
= L(sik)

4
=

1

1 + e
−sik (2.6)

then one obtains the standard static (not even quasi-static) networks often used with

the popular error backpropagation method, also known as the generalized delta rule, for

feedforward neural networks. Such networks are therefore special cases of our dynamic

feedforward neural networks. The logistic function L(sik), as illustrated in Fig. 2.3, is

strictly monotonically increasing in sik. However, we will generally use nonzero v’s and

τ ’s, and will instead of the logistic function apply other infinitely smooth (C∞) nonlinear

modelling functions F . The standard logistic function lacks the common transition be-

tween highly nonlinear and weakly nonlinear behaviour that is typical for semiconductor

devices and circuits12.
12One may think of simple examples like the transition in MOSFET drain currents when going from

2.2. DYNAMIC FEEDFORWARD NEURAL NETWORK EQUATIONS 29

-10 -5 5 10
s

0.2

0.4

0.6

0.8

1

F0

Figure 2.3: Logistic function L(sik).

One of the alternative functions for semiconductor device modelling is

F1(sik, δik)
4
=

1
δik

[
ln
(

cosh
sik + δik

2

)
− ln

(
cosh

sik − δik
2

)]

=
1
δik

ln
cosh sik + δik

2
cosh sik − δik2

(2.7)

with δik 6= 0. This sigmoid function is strictly monotonically increasing in the variable sik,

and even antisymmetric in sik: F1(sik, δik) = −F1(−sik, δik), as illustrated in Fig. 2.4.

Note, however, that the function is symmetric13 in δik: F1(sik, δik) = F1(sik,−δik). For

|δik| � 0, Eq. (2.7) behaves asymptotically as F1(sik, δik) ≈ −1 + exp(sik + δik)/|δik|
for sik < −|δik|, F1(sik, δik) ≈ sik/|δik| for −|δik| < sik < |δik|, and F1(sik, δik) ≈
1 − exp(δik − sik)/|δik| for sik > |δik|. The function defined in Eq. (2.7) needs to be

subthreshold to strong inversion by varying the gate potential, or of the current through a series connection
of a resistor and a diode, when driven by a varying voltage source. When evaluating L(wijkyj,k−1) for
large positive values of wijk, one indeed obtains highly nonlinear exponential “diode-like” behaviour as a
function of yj,k−1 for yj,k−1 � 0 or yj,k−1 � 0 (not counting a fixed offset of size 1 in the latter case).
However, at the same time one obtains an undesirable very steep transition around yj,k−1 = 0, approaching
a discontinuity for wijk →∞.

13Symmetry of a non-constant function implies nonmonotonicity. However, monotonicity in parameter
space is usually not required, because it does not cause problems in circuit simulation, where only the dc
monotonicity in (electrical) variables counts.

30 CHAPTER 2. DYNAMIC NEURAL NETWORKS

rewritten into several numerically very different but mathematically equivalent forms for

improved numerical robustness, to avoid loss of digits, and for computational efficiency in

the actual implementation. The function is related to the logistic function in the sense that

it is, apart from a linear scaling, the integral over sik of the difference of two transformed

logistic functions, obtained by shifting one logistic function by −δik along the sik-axis,

and another logistic function by +δik. This construction effectively provides us with a

polynomial (linear) region and two exponential saturation regions. Thereby we have the

practical equivalent of two typically dominant basis functions for semiconductor device

modelling, the motivation for which runs along similar lines of thought as in highly non-

linear multidimensional table modelling [39]. To show the integral relation between L and

F1, we first note that the logistic function L is related to the tanh function by

2L(x)− 1 =
2

1 + e−x
− 1 =

e
+x/2

− e
−x/2

e
+x/2

+ e
−x/2 = tanh

x

2
(2.8)

The indefinite integral of the tanh(x) function is ln(cosh(x)) (neglecting the integration

constant), as is readily verified by differentiating the latter, and we easily obtain

∫
L(x) dx =

x

2
+ ln

(
cosh

x

2

)
(2.9)

-10

0

10

s-10

0

10

delta

-1

-0.5

0

0.5

1

F1

-10

0

10

s

-1

-0.5

0

0.5

1

F1

Figure 2.4: Neuron nonlinearity F1(sik, δik).

2.2. DYNAMIC FEEDFORWARD NEURAL NETWORK EQUATIONS 31

such that we find, using the symmetry of the cosh function,

1
δik

∫ sik
0

(L(x+ δik)− L(x− δik)) dx =

1
δik

[
x+ δik

2 + ln
(
cosh x+ δik

2
)
−
(
x− δik

2 + ln
(
cosh x− δik2

))]sik
0

=

1
δik

ln
cosh x+ δik

2
cosh x− δik2

sik
0

= 1
δik

ln
cosh sik + δik

2
cosh sik − δik2

(2.10)

which is the F1(sik, δik) defined in Eq. (2.7). Another interesting property is that the

F1(sik, δik) reduces again to a linearly scaled logistic function for δik approaching zero,

i.e.,

lim
δik→0

F1(sik, δik) = 2L(sik)− 1 = tanh
(
sik
2

)
(2.11)

The limit is easily obtained by linearizing the integrand in the first line of Eq. (2.10) at x

as a function of δik, or alternatively by applying l’Hôpital’s rule.

Derivatives of F1(sik, δik) in Eq. (2.7) are needed for transient sensitivity (first partial

derivatives only) and for ac sensitivity (second partial derivatives for dc shift), and are

given by

∂F1

∂sik
=

1
δik

(L(sik + δik)− L(sik − δik)) (2.12)

∂2F1

∂s2
ik

=
1
δik

(L(sik + δik)[1− L(sik + δik)]− L(sik − δik)[1− L(sik − δik)]) (2.13)

∂F1

∂δik
=

1
δik

(L(sik + δik) + L(sik − δik)−F1(sik, δik)− 1) (2.14)

∂2F1
∂δik∂sik

≡ ∂2F1
∂sik∂δik

=

1
δik

(
L(sik + δik)[1− L(sik + δik)] + L(sik − δik)[1− L(sik − δik)]− ∂F1

∂sik

) (2.15)

The strict monotonicity of F1 is obvious from the expression for the first partial derivative

in Eq. (2.12), since, for positive δik, the first term between the outer parentheses is always

larger than the second term, in view of the fact that L is strictly monotonically increasing.

For negative δik, the second term is the largest, but the sign change of the factor 1/δik
compensates the sign change in the subtraction of terms between parentheses, such that

the first partial derivative of F1 w.r.t. sik is always positive for δik 6= 0.

32 CHAPTER 2. DYNAMIC NEURAL NETWORKS

Yet another choice for F uses the argument δik only to control the sharpness of the transi-

tion between linear and exponential behaviour, without simultaneously varying the size of

the near-linear interval. Preliminary experience with modelling MOSFET dc characteris-

tics indicates that this helps to avoid unacceptable local minima in the error function (cost

function) for optimization—unacceptable in the sense that the results show too gradual

near-subthreshold transitions. Another choice for F(sik, δik) is therefore defined as

F2(sik, δik)
4
=

1
δ2
ik

[
ln

(
cosh

δ2
ik(sik + 1)

2

)
− ln

(
cosh

δ2
ik(sik − 1)

2

)]

=
1
δ2
ik

ln
cosh δ

2
ik(sik + 1)

2

cosh δ
2
ik(sik − 1)

2

(2.16)

-2

0

2

s-5

-2.5

0

2.5

5

delta

-1

-0.5

0

0.5

1

F2

-2

0

2

s

-1

-0.5

0

0.5

1

F2

Figure 2.5: Neuron nonlinearity F2(sik, δik).

where the square of δik 6= 0 avoids the need for absolute signs, while it also keeps practical

values of δik for MOSFET subthreshold and bipolar modelling closer to 1, i.e., nearer to

typical values for most other parameters in a suitably scaled neural network (see also

section 4.1.1). For instance, δ2
ik ≈ 40 would be typical for Boltzmann factors. The

properties of F2 are very similar to those of F1, since it is actually a differently scaled

2.3. ANALYSIS OF NEURAL NETWORK DIFFERENTIAL EQUATIONS 33

version of F1:

F2(sik, δik) ≡ F1(δ2
ik sik, δ

2
ik) (2.17)

So the antisymmetry (in s) and symmetry (in δ) properties still hold for F2. For |δik| � 0,

Eq. (2.16) behaves asymptotically as F2(sik, δik) ≈ −1+exp(δ2
ik(sik+1))/δ2

ik for sik < −1,

F2(sik, δik) ≈ sik for −1 < sik < 1, and F2(sik, δik) ≈ 1 − exp(−δ2
ik(sik − 1))/δ2

ik for

sik > 1. The transitions to and from linear behaviour now apparently lie around sik = −1

and sik = +1, respectively. The calculation of derivative expressions for sensitivity is

omitted here. These expressions are easily obtained from Eq. (2.17) together with Eqs.

(2.12), (2.13), (2.14) and (2.15). F2(sik, δik) is illustrated in Fig. 2.5.

The functions F0, F1 and F2 are all nonlinear, (strictly) monotonically increasing and

bounded continuous functions, thereby providing the general capability for representing

any continuous multidimensional static behaviour up to any desired accuracy, using a

static feedforward network and requiring not more than one14 hidden layer [19, 23]. The

weaker condition from [34] of having nonpolynomial functions F is then also fulfilled.

2.3 Analysis of Neural Network Differential Equations

Different kinds of dynamic behaviour may arise even from an individual neuron, depend-

ing on the values of its parameters. In the following, analytical solutions are derived for

the homogeneous part of the neuron differential equation (2.2), as well as for some spe-

cial cases of the non-homogeneous differential equation. These analytical results lead to

conditions that guarantee the stability of dynamic feedforward neural networks. Finally,

a few concrete examples of neuron response curves are given.

2.3.1 Solutions and Eigenvalues

If the time-dependent behaviour of sik is known exactly (at all time points), the right-hand

side of Eq. (2.2) is the source term of a second order ordinary (linear) differential equation
14When an arbitrary number of hidden layers is allowed, one can devise many alternative schemes. For

instance, a squaring function x → x2 can be approximated on a small interval via linear combinations of
an arbitrary nonlinear function F , since a Taylor expansion around a constant c gives x2 = 2[F(c+ x)−
F(c)− xF ′(c)]/F ′′(c) +O(x3). The only provision here is that F is at least three times differentiable (or
at least four times differentiable if we would have used the more accurate alternative x2 = [F(c + x) −
2F(c) +F(c− x)]/F ′′(c) +O(x4)). These requirements are satisfied by our C∞ functions F0, F1 and F2.
A multiplication xy can subsequently be constructed as a linear combination of squaring functions through
xy = 1

4
[(x + y)2 − (x − y)2], xy = 1

2
[(x + y)2 − x2 − y2] or xy = − 1

2
[(x − y)2 − x2 − y2]. A combination

of additions and multiplications can then be used to construct any multidimensional polynomial, which in
turn can be used to approximate any continuous multidimensional function up to arbitrary accuracy. See
also [33].

34 CHAPTER 2. DYNAMIC NEURAL NETWORKS

in yik. Because sik will be specified at the network input only via values at discrete time

points, intermediate values are not really known. However, one could assume and make

use of a particular input interpolation, e.g., linear, during each time step. If, for instance,

linear interpolation is used, the differential equations of the first hidden layer k = 1 of

the neural networks can be solved exactly (analytically) for each time interval spanned

by subsequent discrete time points of the network input. If one uses a piecewise linear

interpolation of the net input to the next layer, for instance sampled at the same set of

time points as given in the network input specification, one can repeat the procedure for

the next stages, and analytically solve the differential equations of subsequent layers. This

gives a semi-analytic solution of the whole network, where the “semi” refers to the forced

piecewise linear shape of the time dependence of the net inputs to neurons.

For each neuron, and for each time interval, we would obtain a differential equation of the

form

τ2,ik
d2yik
dt2

+ τ1,ik
dyik
dt

+ yik = a t + b (2.18)

with constants a and b for a single segment of the piecewise linear description of the right-

hand side of Eq. (2.2). It is assumed here that τ1,ik ≥ 0 and τ2,ik > 0 (the special case

τ2,ik = 0 is treated further on).

The homogeneous part (with a = b = 0) can then be written as

d2yik
dt2

+ 2γ
dyik
dt

+ ω2
0 yik = 0 (2.19)

for which we have γ ≥ 0 and ω0 > 0, using

γ
4
=

τ1,ik

2τ2,ik
(2.20)

and

ω0
4
=

1
√
τ2,ik

(2.21)

The quality factor, or Q-factor, of the differential equation is defined by

Q
4
=
ω0

2γ
=
√
τ2,ik

τ1,ik
(2.22)

Equation (2.19) is solved by substituting yik = exp(λt), giving the characteristic equation

λ2 + 2γλ + ω2
0 = 0 (2.23)

2.3. ANALYSIS OF NEURAL NETWORK DIFFERENTIAL EQUATIONS 35

with solution(s)

λ1,2 = −γ ±
√
γ2 − ω2

0

=


−γ ± γd if γ > ω0 > 0
−γ if γ = ω0 > 0
−γ ± ωd if 0 < γ < ω0

(2.24)

using

γd
4
=

√
γ2 − ω2

0

ωd
4
=

√
ω2

0 − γ2 (2.25)

The “natural frequencies” λ may also be interpreted as eigenvalues, because Eq. (2.19)

can be rewritten in the form ẋ = Ax with the elements aij of the 2× 2 matrix A related

to γ and ω0 through 2γ = −(a11 + a22) and ω2
0 = a11a22 − a12a21. Solving the eigenvalue

problem Ax = λIx yields the same solutions for λ as in Eq. (2.24).

The homogeneous solutions corresponding to Eq. (2.19) fall into several categories [10]:

• Overdamped response (γ > ω0 > 0; 0 < Q < 1
2)

y
(h)
ik (t) = C1 e

λ1t + C2 e
λ2t (2.26)

with constants C1 and C2, while λ1 = −γ + γd and λ2 = −γ − γd are negative real

numbers.

• Critically damped response (γ = ω0 > 0; Q = 1
2)

y
(h)
ik (t) = (C1 + C2t) e−γt (2.27)

with constants C1 and C2, while λ1 = λ2 = −γ = −ω0 is real and negative.

• Underdamped response (0 < γ < ω0; 1
2 < Q <∞)

y
(h)
ik (t) = C1 e

−γt cos(ωdt − C2) (2.28)

with constants C1 and C2, while λ1 = −γ + ωd and λ2 = −γ − ωd are complex

conjugate numbers with a negative real part −γ.

• Lossless response (γ = 0, ω0 > 0; Q =∞)

y
(h)
ik (t) = C1 cos(ω0t − C2) (2.29)

with constants C1 and C2, while λ1 = ω0 and λ2 = −ω0 are complex conjugate

imaginary numbers.

36 CHAPTER 2. DYNAMIC NEURAL NETWORKS

A particular solution y
(p)
ik (t) of Eq. (2.18) is given by

y
(p)
ik (t) = a t + b− 2aγ

ω2
0

= a t + b− aτ1,ik (2.30)

which is easily verified by substitution in Eq. (2.18).

The complete solution of Eq. (2.18) is therefore given by

yik(t) = y
(h)
ik (t) + y

(p)
ik (t) (2.31)

with the homogeneous solution selected from the above-mentioned cases.

In the special case where τ1,ik > 0 and τ2,ik = 0 in (2.18), we have a first order differential

equation, leading to

yik(t) = C eλt + a t + b− aτ1,ik (2.32)

with constant C, while λ = −1/τ1,ik is a negative real number.

From the above derivation it is clear that calculation of the semi-analytical solution, con-

taining exponential, goniometrical and/or square root functions, is rather expensive. For

this reason, and because a numerical approach is also easily applied to any alternative

differential equation, it is probably better to perform the integration of the second order

ordinary (linear) differential equation numerically via discretization with finite differences.

The use of the above analytical derivation lies more in providing qualitative insight in the

different kinds of behaviour that may occur for different parameter settings. This is par-

ticularly useful in designing suitable nonlinear parameter constraint functions τ1,ik =

τ1(σ1,ik , σ2,ik) and τ2,ik = τ2(σ1,ik , σ2,ik). The issue will be considered in more detail in

section 4.1.2.

2.3.2 Stability of Dynamic Feedforward Neural Networks

The homogeneous differential equation (2.19) is also the homogeneous part of Eq. (2.2).

Moreover, the corresponding analysis of the previous section fully covers the situation

where the neuron inputs yj,k−1 from the preceding layer are constant, such that sik is

constant according to Eq. (2.3). The source term F(sik, δik) of Eq. (2.2) is then also

constant. In terms of Eq. (2.18) this gives the constants a = 0 and b = F(sik, δik).

If the lossless response of Eq. (2.29) is suppressed by always having τ1,ik > 0 instead

of the earlier condition τ1,ik ≥ 0, then the real part of the natural frequencies λ in Eq.

(2.24) is always negative. In that case, the behaviour is exponentially stable [10], which

here implies that for constant neuron inputs the time-varying part of the neuron output

2.3. ANALYSIS OF NEURAL NETWORK DIFFERENTIAL EQUATIONS 37

yik(t) will decay to zero as t → ∞. The parameter function τ1(σ1,ik , σ2,ik) that will be

defined in section 4.1.2.1 indeed ensures that τ1,ik > 0. Due to the feedforward structure

of our neural networks, this also means that, for constant network inputs, the time-varying

part of the neural network outputs x(K)(t) will decay to zero as t → ∞, thus ensuring

stability of the whole neural network. This is obvious from the fact that, for constant

neural network inputs, the time-varying part of the outputs of neurons in layer k = 1

decays to zero as t→∞, thereby making the inputs to a next layer k = 2 constant. This

in turn implies that the time-varying part of the outputs of neurons in layer k = 2 decays

to zero as t → ∞. This argument is then repeated up to and including the output layer

k = K.

2.3.3 Examples of Neuron Soma Response to Net Input sik(t)

Although the above-derived solutions of section 2.3.1 are well-known classic results, a few

illustrations may help to obtain a qualitative overview of various kinds of behaviour for

yik(t) that result from particular choices of the net input sik(t). By using a = 0, b = 1, and

starting with initial conditions yik = 0 and dyik/dt = 0 at t = 0, we find from Eq. (2.18)

the response to the Heaviside unit step function us(t) given by

us(t) =

{
0 if t ≤ 0
1 if t > 0

(2.33)

Fig. 2.6 illustrates the resulting yik(t) for τ2,ik = 1 and Q ∈
{

1
8 ,

1
4 ,

1
2 , 1, 2, 4,∞

}
.

One can notice the ringing effects for Q > 1
2 , as well as the constant oscillation amplitude

for the lossless case with Q =∞.

For a = 1, b = 0, and again starting with initial conditions yik = 0 and dyik/dt = 0 at

t = 0, we find from Eq. (2.18) the response to a linear ramp function ur(t) given by

ur(t) =

{
0 if t ≤ 0
t if t > 0

(2.34)

Fig. 2.7 illustrates the resulting yik(t) for τ2,ik = 1 and Q ∈
{

1
8 ,

1
4 ,

1
2 , 1, 2, 4,∞

}
.

From Eqs. (2.30) and (2.31) it is clear that, for finite Q, the behaviour of yik(t) will

approach the delayed (time-shifted) linear behaviour a (t − τ1,ik) + b for t → ∞. With

the above parameter choices for τ2,ik and Q, and omitting the case Q =∞ , we obtain the

corresponding delays τ1,ik ∈
{

8, 4, 2, 1, 1
2 ,

1
4

}
.

When the left-hand side of Eq. (2.18) is driven by a sinusoidal source term (instead of

the present source term a t + b), we may also represent the steady state behaviour by a

38 CHAPTER 2. DYNAMIC NEURAL NETWORKS

5 10 15 20 25
time

0.5

1

1.5

2

y

Figure 2.6: Unit step response yik(t) for τ2,ik = 1 and Q ∈
{

1
8 ,

1
4 ,

1
2 , 1, 2, 4,∞

}
.

5 10 15 20 25
time

5

10

15

20

25

y

Figure 2.7: Linear ramp response yik(t) for τ2,ik = 1 and Q ∈
{

1
8 ,

1
4 ,

1
2 , 1, 2, 4,∞

}
.

2.3. ANALYSIS OF NEURAL NETWORK DIFFERENTIAL EQUATIONS 39

0.5 1 1.5 2
omega

1

2

3

4

|H|

Figure 2.8: |H(ω)| for τ2,ik = 1 and Q ∈
{

1
8 ,

1
4 ,

1
2 , 1, 2, 4

}
.

0.5 1 1.5 2
omega

-30

-60

-90

-120

-150

-180

Phase(H)

Figure 2.9: 6 H(ω), in degrees, for τ2,ik = 1 and Q ∈
{

1
8 ,

1
4 ,

1
2 , 1, 2, 4

}
.

40 CHAPTER 2. DYNAMIC NEURAL NETWORKS

frequency domain transfer function H(ω) as given by

H(ω) =
1

1 + ωτ1,ik − τ2,ik · ω2 (2.35)

which for τ2,ik = 1 and Q ∈
{

1
8 ,

1
4 ,

1
2 , 1, 2, 4

}
results in the plots for |H| and 6 H as shown

in Fig. 2.8 and Fig. 2.9, respectively. Large peaks in |H| arise for large values of Q. These

peaks are positioned near angular frequencies ω = ω0, and their height approximates the

corresponding value of Q. The curve in Fig. 2.9 that gets closest to a 180 degree phase

shift is the one corresponding to Q = 4. At the other extreme, the curve that hardly gets

beyond a 90 degree phase shift corresponds to Q = 1
8 . For Q = 0 (not shown), the phase

shift of the corresponding first order system would never get beyond 90 degrees.

Frequency domain transfer functions of individual neurons and transfer matrices of neural

networks will be discussed in more detail in the context of small-signal ac analysis in

sections 3.2.1.1 and 3.2.3.

2.4 Representations by Dynamic Neural Networks

Decisive for a widespread application of dynamic neural networks will be the ability of

these networks to represent a number of important general classes of behaviour. This issue

is best considered separate from the ability to construct or learn a representation of that

behaviour. As in mathematics, a proof of the existence of a solution to a problem does

not always provide the capability to find or construct a solution, but it at least indicates

that it is worth trying.

2.4.1 Representation of Quasistatic Behaviour

In physical modelling for circuit simulation, a device is usually partitioned into submodels

or lumps that are described quasistatically, which implies that the electrical state of such a

part responds instantaneously to the applied bias. In other words, one considers submodels

that themselves have no internal nodes with associated charges.

One of the most common situations for a built-in circuit simulator model is that dc terminal

currents I(dc) and so-called equivalent terminal charges Q(eq) of a device are directly and

uniquely determined by the externally applied time-dependent voltages V (t). This is also

typical for the quasistatic modelling of the intrinsic behaviour of MOSFETs, in order

to get rid of the non-quasistatic channel charge distribution [48]. The actual quasistatic

2.4. REPRESENTATIONS BY DYNAMIC NEURAL NETWORKS 41

terminal currents of a device model with parameters p are then given by

I(t) = I(dc) (V (t),p) +
d
dt
Q(eq) (V (t),p) (2.36)

In MOSFET modelling, one often uses just one such a quasistatic lump. For example,

the Philips’ MOST model 9 belongs to this class of models. The validity of a single-lump

quasistatic MOSFET model will generally break down above angular frequencies that are

larger than the inverse of the dominant time constants of the channel between drain and

source. These time constants strongly depend on the MOSFET bias condition, which

makes it difficult to specify one characteristic frequency15. However, because a quasistatic

model can correctly represent the (dc+capacitive) terminal currents in the low-frequency

limit, it is useful to consider whether the neural networks can represent (the behaviour

of) arbitrary quasistatic models as a special case, namely as a special case of the truly

dynamic non-quasistatic models. Fortunately, they can.

In the literature it has been shown that continuous multidimensional static behaviour

can up to any desired accuracy be represented by a (linearly scaled) static feedforward

network, requiring not more than one hidden layer and some nonpolynomial function

[19, 23, 34]. So this immediately covers any model function for the dc terminal current

15With drain and source tied together, and with the channel in strong inversion (with the gate-source
and gate-drain voltage well above the threshold voltage), significant deviations from quasistatic behaviour
may be expected above frequencies where the product of gate-source capacitance—which now equals the
gate-drain capacitance—and angular frequency becomes larger than the drain-source conductance.

Figure 2.10: Representation of a quasistatic model by a feedforward neural network.

42 CHAPTER 2. DYNAMIC NEURAL NETWORKS

I(dc)(V). Furthermore, simply by adding another network in parallel, one can of course

also represent any function Q(eq)(V) with a neural network containing not more than one

hidden layer. However, according to Eq. (2.36), we must add the time-derivative of Q(eq)

to the dc current I(dc). This is easily done with an additional network layer k = 3. A

number of nonzero wij,3 and zero vij,3 values are used to copy the dc currents into the

net input si,3 of output neurons in this extra layer. Zero wij,3 and nonzero vij,3 values are

used to add the appropriate time derivatives of the charges, as given by the outputs of

other neurons in layer k = 2—those of the previously mentioned parallel network.

An illustration of the procedure is given in Fig. 2.10 for a 3-input 3-output neural network,

as needed to represent a quasistatic model for a 4-terminal device. (We will not try to

formalize and prescribe the rather trivial bookkeeping details of giving concrete values to

the wij,3 and vij,3.) The τ1,ik and τ2,ik parameters are kept at zero in all layers. The net

input of output layer k = 3 is already the desired outcome of Eq. (2.36) and must therefore

be transparently passed on to the network outputs by using linear(ized) behaviour in F .

The latter is always possible by making appropriate use of the linear scalings that are

part of our neural network definitions. A (nearly) linear region of F need not explicitly be

present, as in F2. Equivalent linear behaviour can be obtained up to any desired accuracy

from any continuous F , by scaling the wij,3 and vij,3 values by a sufficiently small factor,

and compensating this scaling at the network output by a corresponding unscaling, by

multiplying the αi values with the inverse of this factor. The θi,3 and βi can all be kept

at zero.

This very simple constructive procedure shows that all quasistatic models are representable

up to arbitrary accuracy by our class of dynamic neural networks. It does not exclude the

possibility that the same may also be possible with fewer than two hidden layers.

2.4.2 Representation of Linear Dynamic Systems

In this section we show that with our dynamic neural network definitions Eqs. (2.2), (2.3)

and (2.5), the behaviour of any linear time invariant lumped circuit with frequency transfer

matrix H(s) can be represented exactly. Here s is the Laplace variable, also called the

complex frequency.

We will first restrict the discussion to the representation of a single but arbitrary element

H(s) of the transfer matrix H(s). The H(s) for multi-input, multi-output systems can

afterwards be synthesized by properly merging and/or extending the neural networks for

individual elements H(s).

It is known that the behaviour of any uniquely solvable linear time-invariant lumped circuit

2.4. REPRESENTATIONS BY DYNAMIC NEURAL NETWORKS 43

can be characterized by the ratio of two polynomials in s with only real-valued coefficients

[10]. Writing the nominator polynomial as n(s) and the denominator polynomial as d(s),

we therefore have

H(s) =
n(s)
d(s)

(2.37)

The zeros of d(s) are called the poles of H(s), and they are the natural frequencies of

the system characterized by H(s). The zeros of n(s) are also the zeros of H(s). Once

the poles and zeros of all elements of H(s) are known or approximated, a constructive

mapping can be devised which gives an exact mapping of the poles and zeros onto our

dynamic feedforward neural networks.

It is also known that all complex-valued zeros of a polynomial with real-valued coeffi-

cients occur in complex conjugate pairs. That implies that such a polynomial can always

be factored into a product of first or second degree polynomials with real-valued coeffi-

cients. Once these individual factors have been mapped onto equivalent dynamic neural

subnetworks, the construction of their overall product is merely a matter of putting these

subnetworks in series (cascading).

As shown further on, the subnetworks will consist of one or at most three linear dynamic

neurons. W.r.t. a single input j, a linear dynamic neuron—with F(sik) = sik —has a

transfer function hijk(s) of the form

hijk(s) =
wijk + s vijk

1 + τ1,iks + τ2,iks2
(2.38)

as follows from the replacement by the Laplace variable s of the time differentiation op-

erator d/dt in Eqs. (2.2) and (2.3).

In the following, it is assumed that H(s) is coprime, meaning that any common factors in

the nominator and denominator of H(s) have already been cancelled.

2.4.2.1 Poles of H(s)

In principle, a pole at the origin of the complex plane could exist. However, that would

create a factor 1/s in H(s), which would remain after partial fraction expansion as a term

proportional to 1/s, having a time domain transform corresponding to infinitely slow

response. This follows from the inverse Laplace transform of 1/(s + a): exp(−at), with

a positive real, and taking the limit a ↓ 0. See also [10]. That would not be a physically

interesting or realistic situation, and we will assume that we do not have any poles located

exactly at the origin of the complex plane. Moreover, it means that any constant term in

d(s) —because it now will be nonzero—can be divided out, such that H(s) is written in

44 CHAPTER 2. DYNAMIC NEURAL NETWORKS

a form having the constant term in d(s) equal to 1, and with the constant term in n(s)

equal to the static (dc) transfer of H(s), i.e., H(s = 0).

• Complex conjugate poles (a± b), a and b both real:

The product of s−(a+b) and s−(a−b) gives the quadratic form s2−2sa+a2 +b2.

If (a, b) 6= (0, 0) as assumed before, we can—without changing the position of poles—

divide by a2 + b2 and get 1− [2a/(a2 + b2)]s+ [1/(a2 + b2)]s2. This exactly matches

the denominator 1 + τ1,iks+ τ2,iks
2 of hijk(s), with real τ1,ik and τ2,ik, if we take

τ1,ik = − 2a
a2 + b2

τ2,ik =
1

a2 + b2
(2.39)

To ensure stability, we may want non-positive real parts in the poles, i.e., a ≤ 0,

such that indeed τ1,ik ≥ 0. We see that τ2,ik > 0 is always fulfilled.

Apparently we can represent any complex conjugate pair of poles of H(s), using just

a single neuron.

• Two arbitrary but real poles a1, a2:

The product of s− a1 and s− a2 gives a1a2 − (a1 + a2)s+ s2. If (a1, 0) 6= (0, 0) and

(a2, 0) 6= (0, 0) as assumed before, we can—without changing the position of poles—

divide by a1a2 and get the quadratic form 1− [(a1 +a2)/(a1a2)]s+[1/(a1a2)]s2. This

exactly matches the denominator 1 + τ1,iks + τ2,iks
2 of hijk(s), with real τ1,ik and

τ2,ik, if we take

τ1,ik = −a1 + a2

a1a2

τ2,ik =
1

a1a2
(2.40)

To ensure stability, we may again want non-positive real parts in both (real) poles,

i.e., a1 ≤ 0, a2 ≤ 0, such that together with the exclusion of the origin (0, 0),

τ1,ik > 0, and also τ2,ik > 0. For a1 ≡ a2, the same values for τ1,ik and τ2,ik arise

as in the case with complex conjugate zeros (a± b) with b ≡ 0, which is what one

would expect.

Apparently we can represent two arbitrary real poles of H(s), using just a single

neuron.

• One arbitrary but real pole a:

This implies a polynomial factor s − a. For (a, 0) 6= (0, 0) as assumed before, we

2.4. REPRESENTATIONS BY DYNAMIC NEURAL NETWORKS 45

can—without changing the position of poles—divide by −a and get 1− (1/a)s. This

exactly matches the denominator 1 + τ1,iks + τ2,iks
2 of hijk(s), with real τ1,ik and

τ2,ik, if we take

τ1,ik = −1
a

τ2,ik = 0 (2.41)

For stability, we will want non-positive real parts for the (real) pole (a, 0), i.e., a ≤ 0,

such that together with the exclusion of the origin (0, 0), τ1,ik > 0.

Apparently we can represent a single arbitrary real pole of H(s), using just a single

neuron.

This provides us with all the ingredients needed to construct an arbitrary set of poles for

the transfer function H(s) of an electrical network. Any set of poles of H(s) can now be

represented by cascading a number of neurons.

It should be noted that many pole orderings, e.g., with increasing distance from the origin,

may give an arbitrary sequence of real poles and complex conjugate poles. Since a pair

of complex conjugate poles must be covered by one and the same neuron, due to its real

coefficients, one generally has to do some reordering to avoid having, for instance, one real

pole, followed by a pair of complex conjugate poles, followed by a real pole again: the

two real poles have to be grouped together to align them with the two neurons needed to

represent the two real poles and the pair of complex conjugate poles, respectively.

2.4.2.2 Zeros of H(s)

The individual zeros of the nominator n(s) of H(s) can in general not be covered by

associated single neurons of the type defined by Eqs. (2.2) and (2.3). The reason is that

the zero of a single-input neuron is found from wijk + svijk = 0, i.e, s = −wijk/vijk,
while wijk and vijk are both real. Consequently, a single single-input neuron can only

represent an arbitrary real-valued zero a of n(s), i.e., a factor (s − a), by taking vijk 6= 0

and wijk = −avijk. The real-valued wijk and vijk of a single neuron do not allow for

complex-valued zeros of n(s).

However, arbitrary complex-valued zeros can be represented by using a simple combination

of three neurons, with two of them in parallel in a single layer, and a third neuron in the

next layer receiving its input from the other two neurons. The two parallel neurons share

their single input. With this neural subnetwork we shall be able to construct an arbitrary

factor 1 + a1s+ a2s
2 in n(s), with a1, a2 both real-valued. This then covers any possible

46 CHAPTER 2. DYNAMIC NEURAL NETWORKS

pair of complex conjugate zeros16. It is worth noting that in the representation of complex-

valued zeros, one still ends up with one modelled zero per neural network layer, but now

using three neurons for two zeros instead of two neurons for two (real) zeros.

First we relabel, for notational clarity, the wijk and vijk parameters of the single-input (x)

single-output (y) neural subnetwork as indicated in Fig. 2.11.

If we neglect, for simplicity of discussion, the poles by temporarily17 setting all the τ1,ik

and τ2,ik of the subnetwork equal to zero, then the transfer of the subnetwork is obviously

given by (w1 + v1s)(w2 + v2s) + (w3 + v3s)(w4 + v4s). Setting w1 = 0, v1 = a2, w2 = 0

and v2 = 1 yields a term a2s
2 in the transfer, and setting w4 = 1, v4 = a1, w3 = 1

and v3 = 0 yields another term 1 + a1s in the transfer. Together this indeed gives the

above-mentioned arbitrary factor 1 + a1s + a2s
2 with a1, a2 both real-valued. Similar to

the earlier treatment of complex conjugate poles (a± b) with a and b both real, we find

that the product of s− (a+ b) and s− (a− b) after division by a2 + b2 leads to a factor

1 − [2a/(a2 + b2)]s + [1/(a2 + b2)]s2. This exactly matches the form 1 + a1s + a2s
2 if we

16Of course it also covers any pair of real-valued zeros, but we didn’t need this construction to represent
real-valued zeros.

17Any poles of H(s) that one would have associated with a neuron in the first of the two layers of the
subnetwork can later easily be reintroduced without modifying the zeros of the subnetwork. This is done
by copying the values of τ1,ik and τ2,ik of one of the two parallel neurons to the respective τ1,ik and τ2,ik
of the other neuron. The two parallel neurons then have identical poles, which then also are the poles of
any linearly weighted combination of their outputs. Poles associated with the neuron in the second of the
two layers of the subnetwork are reintroduced without any special action.

Figure 2.11: Parameter settings in a neural subnetwork for the representation of two
complex conjugate zeros.

2.4. REPRESENTATIONS BY DYNAMIC NEURAL NETWORKS 47

take

a1 = − 2a
a2 + b2

a2 =
1

a2 + b2
(2.42)

Any set of zeros of H(s) can again be represented by cascading a number of neurons—or

neural subnetworks for the complex-valued zeros.

The constant term in n(s) remains to be represented, since the above assignments only

lead to the correct zeros of H(s), but with a constant term still equal to 1, which will

normally not match the static transfer of H(s). The constant term in n(s) may be set to

its proper value by multiplying the wijk and vijk in one particular layer of the chain of

neurons by the required value of the static (real-valued) transfer of H(s).

One can combine the set of poles and zeros of H(s) in a single chain of neurons, using

only one neuron per layer except for the complex zeros of H(s), which lead to two neurons

in some of the layers. One can make use of neurons with missing poles by setting τ1,ik =

τ2,ik = 0, or make use of neurons with zeros by setting vijk = 0, in order to map any given

set of poles and zeros of H(s) onto a single chain of neurons.

2.4.2.3 Constructing H(s) from H(s)

Multiple H(s)-chains of neurons can be used to represent each of the individual elements

of the H(s) matrix of multi-input, multi-output linear systems, while the wijK of an

(additional) output layer K, with vijK = 0 and αi = 1, can be used to finally complete the

exact mapping of H(s) onto a neural network. A value wijK = 1 is used for a connection

from the chain for one H(s)-element to the network output corresponding to the row-index

of that particular H(s)-element. For all remaining connections wijK = 0.

It should perhaps be stressed that most of the proposed parameter assignments for poles

and zeros are by no means unique, but merely serve to show, by construction, that at

least one exact pole-zero mapping onto a dynamic feedforward neural network exists.

Any numerical reasons for using a specific ordering of poles or zeros, or for using other

alternative combinations of parameter values were also not taken into account. Using

partial fraction expansion, it can also be shown that a neural network with just a single

hidden layer can up to arbitrary accuracy represent the behaviour of linear time-invariant

lumped circuits, assuming that all poles are simple (i.e., non-identical) poles and that there

are more poles than zeros. The former requirement is in principle easily fulfilled when

allowing for infinitesimal changes in the position of poles, while the latter requirement

only means that the magnitude of the transfer should drop to zero for sufficiently high

48 CHAPTER 2. DYNAMIC NEURAL NETWORKS

frequencies, which is often the case for the parts of system behaviour that are relevant to

be modelled18.

2.4.3 Representations by Neural Networks with Feedback

Although learning in neural networks with feedback is not covered in this thesis, it is

worthwhile to consider the ability to represent certain kinds of behaviour when feedback

is applied externally to our neural networks. As it turns out, the addition of feedback allows

for the representation of very general classes of both linear and nonlinear multidimensional

dynamic behaviour.

2.4.3.1 Representation of Linear Dynamic Systems

We will show in this section that with definitions in Eqs. (2.2), (2.3) and (2.5), a dynamic

feedforward neural network without a hidden layer but with external feedback suffices

to represent the time evolution of any linear dynamic system characterized by the state

equation

ẋ = A x + B u + C u̇ (2.43)

whereA is an n×n matrix, x is a state vector of length n, B and C are n×m matrices, and

u = u(t) is an explicitly time-dependent input vector of length m. As usual, t represents

the time. First derivatives w.r.t. time are now indicated by a dot, i.e., ẋ ≡ dx/dt,

u̇ ≡ du/dt.

Eq. (2.43) is a special case of the nonlinear state equation

ẋ = f(x, t) (2.44)

with nonlinear vector function f . This form is already sufficiently general for circuit sim-

ulation with quasistatically modelled (sub)devices, but sometimes the even more general

implicit form

f(x, ẋ, t) = 0 (2.45)

is used in formal derivations. The elements of x are in all these cases called state variables.

However, we will at first only further pursue the representation of linear dynamic systems

by means of neural networks. We will forge equation Eq. (2.43) into a form corresponding
18For example, one will usually not be interested in accurately modelling—for circuit simulation—an

amplifier at frequencies where its wires act as antennas, and where its intended amplification factor has
already dropped far below one.

2.4. REPRESENTATIONS BY DYNAMIC NEURAL NETWORKS 49

to a feedforward network having a {n+m, n} topology, supplemented by direct external

feedback from all n outputs to the first n (of a total of n+m) inputs. The remaining m

network inputs are then used for the input vector u(t). This is illustrated in Fig. 2.12.

By defining matrices

W x
4
= I + A (2.46)

V x
4
= −I (2.47)

W u
4
= B (2.48)

V u
4
= C (2.49)

with I the n × n identity matrix, we can rewrite Eq. (2.43) into a form with nonsquare

n× (n+m) matrices as in

(W x W u)

(
x
u

)
+ (V x V u)

(
ẋ
u̇

)
= x (2.50)

The elements of the right-hand side x of Eq. (2.50) can be directly associated with the

neuron outputs yi,1 in layer k = 1. We set αi = 1 and βi = 0 in Eq. (2.5), thereby making

Figure 2.12: Representation of linear dynamic systems by dynamic feedforward neu-
ral networks with external feedback.

50 CHAPTER 2. DYNAMIC NEURAL NETWORKS

the network outputs identical to the neuron outputs. Due to the external feedback, the

elements of x in Eq. (2.50) are now also identical to the network inputs x(0)
i , i = 0, . . . , n−1.

To complete the association of Eq. (2.50) with Eqs. (2.2) and (2.3), we take F(sik) ≡ sik.
The wij,1 are simply the elements of the matrix (W x W u) in the first term in the left-

hand side of Eq. (2.50), while the vij,1 are the elements of the matrix (V x V u) in the

second term in the left-hand side of Eq. (2.50). Through these choices, we can put the

remaining parameters to zero, i.e., τ1,i,1 = 0, τ2,i,1 = 0 and θi,1 = 0 for i = 0, . . . , n − 1,

because we do not need these parameters here.

This short excursion into feedforward neural networks with external feedback already

shows, that our present set of neural network definitions has a great versatility. Very

general linear dynamic systems are easily mapped onto neural networks, with only a

minimal increase in representational complexity, the only extension being the constraints

imposed by the external feedback.

2.4.3.2 Representation of General Nonlinear Dynamic Systems

The results of the preceding section give rise to the important question, whether we can

also devise a procedure that allows us, at least in principle, to represent arbitrary nonlinear

dynamic systems as expressed by Eq. (2.45). That would imply that our feedforward neural

networks, when supplemented with feedback connections, can represent the behaviour of

any nonlinear dynamic electronic circuit.

We will consider the neural network of Fig. 2.13. As in the preceding section, we will

use a state vector x of length n in a feedback loop, thereby forming part of the network

input, while u = u(t) is the explicitly time-dependent input vector of length m. All timing

parameters τ1,i,1, τ2,i,1 τ1,i,2, τ2,i,2 and vij,2 are kept at zero, because it turns out that we

do not need them to answer the above-mentioned question. Only the timing parameters

vij,1 of the hidden layer k = 1 will generally be nonzero. We denote the net input to layer

k = 1 by a vector s of length p, with elements si,1. Similarly, the threshold vector θ of

length p contains elements θi,1. Then we have

(W x W u)

(
x
u

)
+ (V x V u)

(
ẋ
u̇

)
− θ = s (2.51)

or, alternatively,

(W x W u V x V u)


x
u
ẋ
u̇

 − θ = s (2.52)

2.4. REPRESENTATIONS BY DYNAMIC NEURAL NETWORKS 51

with W x the n× p matrix of weight parameters wij,1 associated with input vector x, V x

the n× p matrix of weight parameters vij,1 associated with input vector x, W u the m× p
matrix of weight parameters wij,1 associated with input vector u, and V u the m×p matrix

of weight parameters vij,1 associated with input vector u.

The latter form of Eq. (2.52) is also obtained if one considers a regular static neural network

with input weight matrix W = (W x W u V x V u), if the complete vector (x u ẋ u̇)T is

supposed to be available at the network input.

This mathematical equivalence allows us to immediately exploit an important result from

the literature on static feedforward neural networks. From the work of [19, 23, 34], it

is clear that we can represent at the network output any continuous nonlinear vector

function F (x,u, ẋ, u̇) up to arbitrary accuracy, by requiring just one hidden layer with

nonpolynomial functions F—and with linear or effectively linearized19 functions in the

output layer.

We will assume that F has n elements, such that the feedback yields

F (x, u, ẋ, u̇) = x (2.53)

In order to represent Eq. (2.45), we realize that the explicitly time-dependent, but still

19See also section 2.2.1.

Figure 2.13: Representation of state equations for general nonlinear dynamic systems
by dynamic feedforward neural networks with external feedback.

52 CHAPTER 2. DYNAMIC NEURAL NETWORKS

unspecified, inputs u = u(t) allow us to define a function F as

F (x, u, ẋ, u̇)
4
≈ f (x, ẋ, t) + x (2.54)

where the arguments x, ẋ and t should now be viewed as independent variables in this def-

inition, and where appropriate choices for u(t) make it possible to represent any explicitly

time-dependent parts of f .

The above approximation can be made arbitrarily close, such that substitution of Eq. (2.54)

in Eq. (2.53) indeed yields the general state equation (2.45), i.e.,

f(x, ẋ, t) = 0 (2.55)

It should be clear that there is a major semantic distinction between a function definition

like (2.54), which should in principle hold for any combination of argument values to have

a nontrivial mapping that fully covers the characteristics of the system to be modelled,

and relations between functions, such as (2.45) and (2.53), which pose implicit relations

among—hence restrictions to—argument values.

Until now, we only considered state equations, while a complete analysis of arbitrary

nonlinear dynamic systems also involves output equations for nonstate variables of the form

y = G (x,u, u̇), also known as input-state-output equations or read-out map according to

[9]. These equations relate the state variables to the observables. However, with electronic

Figure 2.14: Representation of general nonlinear dynamic systems by feedforward
neural networks with external feedback.

2.4. REPRESENTATIONS BY DYNAMIC NEURAL NETWORKS 53

circuits the distinction between the two is often blurred, since output functions, e.g., for

currents, may already be part of the construction—and solution—of the state equations,

e.g., for voltages. As long as one is only concerned with charges, fluxes, voltages and

currents, the output functions are often components of f (x, ẋ, t). For example, it may

be impossible to solve the nodal voltages in a circuit without evaluating the terminal

currents of devices, because these take part in the application of the Kirchhoff current law.

Therefore, in electronic circuit analysis, the output equations G are often not considered

as separate equations, and only Eq. (2.45) is considered in the formalism.

Any left-over output equations could be represented by a companion feedforward neural

network with one hidden layer, but without external feedback. The additional network

takes the available x and u as its inputs, and emulates the behaviour of a static feedforward

neural network with inputs x, u and u̇ through use of the parameters vij,1. The procedure

would be entirely analogous to the mathematical equivalence that we used earlier in this

section.

Furthermore, since x is, due to the feedback, also available at the input of the network

in Fig. 2.13, the companion network for G can be placed in parallel with the network

representing F , thereby still having only one hidden layer for the combination of the two

neural networks. This in turn implies that the two neural networks (for F̂ and for Ĝ) can

be merged into one neural network with the same functionality, as is shown in Fig. 2.14.

In view of all these very general results, the design of learning procedures for feedforward

nonlinear dynamic neural networks with external feedback connections could be an inter-

esting topic for future work on universal approximators for dynamic systems. On the other

hand, feedback will definitely reduce the tractability of giving mathematical guarantees

on several desirable properties like uniqueness of behaviour (i.e., no multiple solutions

to the network equations), stability, and monotonicity. The representational generality

of dynamic neural networks with feedback basically implies, that any kind of unwanted

behaviour may occur, including, for instance, chaotic behaviour. Furthermore, feedback

generally renders it impossible to obtain explicit expressions for nonlinear behaviour, such

that nonconvergence may occur during numerical simulation.

For the present, the value of the above considerations lies mainly in establishing links with

general circuit and system theory, thus helping us understand how our non-quasistatic

feedforward neural networks constitute a special class within a broader, but also less

tractable, framework. We have been considering general continuous-time neural systems.

Heading in the same general direction is a recent publication on the abilities of continuous-

time recurrent neural networks [20]. Somewhat related work on general discrete-time

neural systems in the context of adaptive filtering can be found in [41].

54 CHAPTER 2. DYNAMIC NEURAL NETWORKS

2.5 Mapping Neural Networks to Circuit Simulators

Apart from the intrinsic capabilities of neural networks to represent certain classes of

behaviour, as discussed before, it is also important to consider the possibilities of mapping

these neural networks onto the input languages of existing analogue circuit simulators.

If that can be done, one can simulate with neural network models without requiring the

implementation of new built-in models in the source code of a particular circuit simulator.

The fact that one then does not need access to the source code, or influence the priority

settings of the simulator release procedures, is a major advantage. The importance of this

simulator independence is the reason to consider this matter before proceeding with the

more theoretical development of learning techniques, described in Chapter 3. For brevity,

only a few of the more difficult or illustrative parts of the mappings will be explained in

detail, although examples of complete mappings are given in Appendix C, sections C.1

and C.2.

2.5.1 Relations with Basic Semiconductor Device Models

In the following, it will be shown how several neuron nonlinearities can be represented by

electrical circuits containing basic semiconductor devices and other circuit elements, when

using idealized models that are available in almost any circuit simulator, for instance in

Berkeley SPICE. This allows the use of neural models in most existing analogue circuit

simulators.

2.5.1.1 SPICE Equivalent Electrical Circuit for F2

It is worth noting that Eq. (2.16) can be rewritten as a combination of ideal diode functions

and their inverses20 through

Vt
δ2
ik

F2(sik, δik) ≡ Vt ln

c1

[
Is
(
eV1/Vt − 1

)]
+ c2

[
Is
(
eV2/Vt − 1

)]
Is

+ 1


− Vt ln

c2

[
Is
(
eV1/Vt − 1

)]
+ c1

[
Is
(
eV2/Vt − 1

)]
Is

+ 1

 (2.56)

with

V1
4
= +

δ2
ikVt
2

sik

V2
4
= −δ

2
ikVt
2

sik = −V1

20This also applies to F1 in Eq. (2.7), although we will skip the details for representing F1.

2.5. MAPPING NEURAL NETWORKS TO CIRCUIT SIMULATORS 55

c1
4
=

eδ
2
ik/2

e−δ
2
ik/2 + eδ

2
ik/2

c2
4
=

e−δ
2
ik/2

e−δ
2
ik/2 + eδ

2
ik/2

= 1 − c1 (2.57)

If the junction emission coefficient of an ideal diode is set to one, and if we denote the

thermal voltage by Vt, the diode expressions become

I(V) = Is
(
eV/Vt − 1

)
⇔ V (I) = Vt ln

(
I

Is
+ 1

)
(2.58)

which can then be used to represent Eq. (2.56) for a single temperature21. This need

for only basic semiconductor device expressions can be seen as another, though quali-

tative, argument in favour of the choice of functions like F2 for semiconductor device

modelling purposes. It can also be used to map neural network descriptions onto prim-

itive (non-behavioural, non-AHDL) simulator languages like the Berkeley SPICE input

language: only independent and linear controlled sources22, and ideal diodes, are needed

to accomplish that for the nonlinearity F2, as is outlined in the left part of Fig. 2.15.
21The thermal voltage Vt = kBT/q contains the absolute temperature T , and unfortunately we cannot

suppress this temperature dependence in the ideal diode expressions.
22With the conventional abbreviations VCVS = voltage-controlled voltage source, CCVS = current-

controlled voltage source, CCCS = current-controlled current source, and VCCS = voltage-controlled
current source. Zero-valued independent voltage sources are often used in SPICE as a work-around to
obtain controlling currents.

Figure 2.15: Equivalent SPICE circuits for F2 (left) and L (right).

56 CHAPTER 2. DYNAMIC NEURAL NETWORKS

Cadence Spectre is largely compatible with Berkeley SPICE, and can therefore be used as

a substitute for SPICE.

2.5.1.2 SPICE Equivalent Electrical Circuit for Logistic Function

The logistic function L of Eq. (2.6) can also be mapped onto a SPICE representation, for

example via

Is (2L(V/Vt)− 1) = I ⇔ L(V/Vt) =
1
2

(
I

Is
+ 1

)
(2.59)

where I is the current through a series connection of two identical ideal diodes, having the

cathodes wired together at an internal node with voltage V0. V is here the voltage across

the series connection. When expressed in formulas, this becomes

I = Is
(
e(V−V0)/Vt − 1

)
= −Is

(
e−V0/Vt − 1

)
(2.60)

from which V0 can be analytically solved as

V0 = Vt ln

(
1 + eV/Vt

2

)
(2.61)

which, after substitution in Eq. (2.60), indeed yields a current I that relates to the logistic

function of Eq. (2.6) according to Eq. (2.59).

However, in a typical circuit simulator, the voltage solution V0 is obtained by a numerical

nonlinear solver (if it converges), applied to the nonlinear subcircuit involving the series

connection of two diodes, as is illustrated in the right part of Fig. 2.15. Consequently, even

though a mathematically exact mapping onto a SPICE-level description is possible, and

even though an analytical solution for the voltage V0 on the internal node is known (to

us), numerical problems in the form of nonconvergence of Berkeley SPICE and Cadence

Spectre could be frequent. This most likely applies to the SPICE input representations of

both F2 and the logistic function L. With Pstar, this problem is avoided, because one can

explicitly define the nonlinear expressions for F2 and L in the input language of Pstar.

For F2, this will be shown in the next section, together with the Pstar representation of

several other components of the neuron differential equation.

An example of a complete SPICE neural network description can be found in Appendix C,

section C.2. That example includes the representation of the full neuron differential equa-

tion (2.2) and the connections among neurons corresponding to Eq. (2.3). The left-hand

side of Eq. (2.2) is represented in a way that is very similar to the Pstar representation

discussed in the next section. The terms with time derivatives in Eq. (2.3) are obtained

from voltages induced by currents that are forced through linear inductors.

2.5. MAPPING NEURAL NETWORKS TO CIRCUIT SIMULATORS 57

2.5.2 Pstar Equivalent Electrical Circuit for Neuron Soma

When generating analogue behavioural models for circuit simulators, one normally has

to map the neuron cell body, or soma, differential equation (2.2) onto some equivalent

electrical circuit. Because the Pstar input language is among the most powerful and

readable, we will here consider a Pstar description, a so-called user model, for a single

non-quasistatic neuron, according to the circuit schematic as shown in Fig. 2.16. The

neuron model is specified in the following example of a so-called user-defined model, which

simply means a model described in the Pstar input language:

MODEL: Neuron(IN,OUT,REF) delta, tau1, tau2;
delta2 = delta * delta;
EC1(AUX,REF) ln((exp(delta2*(V(IN,REF)+1)/2) + exp(-delta2*(V(IN,REF)+1)/2))

/ (exp(delta2*(V(IN,REF)-1)/2) + exp(-delta2*(V(IN,REF)-1)/2))
) / delta2;

L1(AUX,OUT) tau1; C2(OUT,REF) tau2 / tau1;
R2(OUT,REF) 1.0 ;

END;

A few comments will clarify the syntax for those who are not familiar with the Pstar input

language. Connecting (terminal) nodes are indicated by unique symbolic names between

parentheses, like in (IN,OUT,REF). The neuron description Eq. (2.2) is encapsulated in a

user model definition, which defines the model Neuron, having terminal nodes IN, OUT,

and a reference terminal called REF. The neuron net input sik will be represented by

Figure 2.16: Circuit schematic of electrical circuit corresponding to Eq. (2.2).

58 CHAPTER 2. DYNAMIC NEURAL NETWORKS

the voltage across nodes IN and REF, while the neuron output yik will be represented

by the voltage across OUT and REF. The neuron parameters delta= δik, tau1=τ1,ik and

tau2=τ2,ik enter as model arguments as specified in the first line, and are in this example

all supposed to be nonzero. Intermediate parameters can be defined, as in delta2= δ2
ik.

The nonlinearity F2(sik, δik) is represented via a nonlinearly controlled voltage source EC1,

connected between an internal node AUX and the reference node REF. EC1 is controlled by

(a nonlinear function of) the voltage between nodes IN and REF. F2 was rewritten in terms

of exponential functions exp() instead of hyperbolic cosines, because Pstar does not know

the latter. Contrary to SPICE, Pstar does not require a separate equivalent electrical

circuit to construct the nonlinearity F2.

The voltage across EC1 represents the right-hand side of Eq. (2.2). A linear inductor L1

with inductance tau1 connects internal node AUX and output node OUT, while OUT and

REF are connected by a second linear capacitor C2 with capacitance tau2/tau1, in parallel

with a linear resistor R2 of 1.0 ohm.

It may not immediately be obvious that this additional circuitry does indeed represent

the left-hand side of Eq. (2.2). To see this, one first realizes that the total current flowing

through C2 and R2 is given by yik + tau2/tau1 dyik
dt , because the neuron output yik is the

voltage across OUT and REF. If only a zero load is externally connected to output node OUT

(which can be ensured by properly devising an encapsulating circuit model for the whole

network of neurons), all this current has to be supplied through the inductor L1. The flux

Φ through L1 therefore equals its inductance tau1 multiplied by this total current, i.e.,

tau1 yik + tau2 dyik
dt . Furthermore, the voltage induced across this inductor is given by

the time derivative of the flux, giving tau1 dyik
dt + tau2 d2yik

dt2
. This voltage between AUX

and OUT has to be added to the voltage yik between OUT and REF to obtain the voltage

between AUX and REF. The sum yields the entire left-hand side of Eq. (2.2). However, the

latter voltage must also be equal to the voltage across the controlled voltage source EC1,

because that source is connected between AUX and REF. Since we have already ensured that

the voltage across EC1 represents the right-hand side of Eq. (2.2), we now find that the

left-hand side of Eq. (2.2) has to equal the right-hand side of Eq. (2.2), which implies that

the behaviour of our equivalent circuit is indeed consistent with the neuron differential

equation (2.2).

The neuron net input sik in Eq. (2.3), represented by the voltage across nodes IN and REF,

can be constructed at a higher hierarchical level, the neural network level, of the Pstar

description. The details of that rather straightforward construction are omitted here. It

only involves linear controlled sources and linear inductors. The latter are used to obtain

the time derivatives of currents in the form of induced voltages, thereby incorporating the

2.6. SOME KNOWN AND ANTICIPATED MODELLING LIMITATIONS 59

differential terms of Eq. (2.3). An example of a complete Pstar neural network description

can be found in Appendix C, section C.1.

2.6 Some Known and Anticipated Modelling Limitations

The dynamic feedforward neural networks as specified by Eqs. (2.2), (2.3) and (2.5), were

designed to have a number of attractive numerical and mathematical properties. There is

a certain price to be paid, however.

The fact that the neural networks are guaranteed to have a unique dc solution immediately

implies that the behaviour of a circuit having multiple dc solutions cannot be completely

modelled by a single neural network, indiscriminate of our time domain extensions. An

example is the nonlinear resistive flip-flop circuit, which has two stable dc solutions—and

one metastable dc solution that we usually don’t (want to) see. Circuits like these are

called bistable. Because the neural networks can represent any (quasi)static behaviour

up to any required accuracy, multiple solutions can be obtained by interconnecting the

neural networks, or their corresponding electrical behavioural models, with other circuit

components or other neural networks, and by imposing (some equivalent of) the Kirchhoff

current law. After all, in regular circuit simulation, including time domain and frequency

domain simulation, all electronic circuits are represented by interconnected (sub)models

that are themselves purely quasistatic. Nevertheless, this solves the problem only in

principle, not in practice, because it assumes that one already knows how to properly

decompose a circuit and how to characterize the resulting “hidden” components by training

data. In general, one does not have that knowledge, which is why a black-box approach

was advocated in the first place.

The multiple dc solutions of the bistable flip-flop arise from feedback connections. Since

there are no feedback connections within the neural networks, modelling limitations will

turn up in all cases where feedback is essential for a certain dc behaviour. This does

definitely not mean that our feedforward neural networks cannot represent devices and

subcircuits in which some form of feedback takes place. If the feedback results in unique

dc behaviour in all situations, or if we want to model only a single dc behaviour among

multiple dc solutions, the static neural networks will23 indeed be able to represent such be-

haviour without needing any feedback, because it is the behaviour that we try to represent,

not any underlying structure or cause.

Another example in which feedback plays an essential role is a nonlinear oscillator24, for
23See section 2.4.1.
24The word “essential” here refers to the proper functioning of the particular physical circuit. It might

turn out not be essential to the neural modelling, in the sense that the behaviour can perhaps still be

60 CHAPTER 2. DYNAMIC NEURAL NETWORKS

which the amplitude is constrained and kept constant through feedback. Although the

neural networks can easily represent oscillatory behaviour through resonance of individ-

ual neurons, there is no feedback mechanism that allows the use of the amplitude of a

neuron oscillation to control and stabilize the oscillation amplitude of that same neuron.

The behaviour of a nonlinear oscillator may for a finite time interval still be accurately

represented by a neural network, because the signal shape can be determined by addi-

tional nonlinear neurons, but for times going towards infinity, there seems to be no way

to prevent that an initially small deviation from a constant amplitude grows very large.

On the other hand, we have to be very careful about what is considered (im)possible,

because a number of tricks could be imagined. For instance, we may have one unstable25

neuron of which the oscillation amplitude keeps growing indefinitely. The nonlinearity

F of a neuron in a next network layer can be used to squash this signal, after an initial

oscillator startup phase, into a close approximation of a block wave of virtually constant,

and certainly bounded, amplitude. The τ1’s and τ2’s in this layer and subsequent layers

can then be used to integrate the block wave a number of times, which is equivalent

to repeated low-pass filtering, resulting in a close approximation of a sinusoidal signal of

constant amplitude. This whole oscillator representation scheme might work adequately in

a circuit simulator, until numerical overflow problems occur within or due to the unstable

hidden neuron with the ever growing oscillation amplitude.

As a final example, we may consider a peak detector circuit. Such a circuit can be as

simple as a linear capacitor in series with a diode, and yet its full behaviour can probably

not26 be represented by the neural networks belonging to the class as defined by Eqs. (2.2),

(2.3) and (2.5).

The fundamental reason seems to be, that the neuron output variable yik can act as a

state (memory) variable that affects the behaviour of neurons in subsequent layers, but it

cannot affect its own future in any nonlinear way. However, in a peak detector circuit, the

sign of the difference between input value and output (state) value determines whether or

not a change of the output value is needed, which implies a nonlinear (feedback) operation

represented without feedback. We have to stay aware of this subtle distinction.
25If unstable neurons are prevented by means of parameter constraints, no neural oscillation will exist,

unless an external signal first drives the neural network away from the dc steady state solution, after
which an oscillation may persist through neural resonance. Other neurons may then gradually turn on and
saturate the gain from the resonant signal to the network output, in order to emulate the startup phase of
the nonlinear oscillator that we wish to represent.

26Learning of peak detection has later also been tried experimentally, in order to confirm our expec-
tations. Surprisingly, a relatively close match to the multiple-target-wave data set was at first obtained
even with small 1-1-1 and 1-2-1 networks, but subsequent analysis showed that this was apparently the
result only of “smart” use of other clues, like the combination of height and steepness of the curves in
the artificially created time domain target data. Consequently, one has to be careful that one does not
introduce, in the training data, some unintended coincidental strong correlation with a behaviour that can
be represented by the neural networks.

2.6. SOME KNOWN AND ANTICIPATED MODELLING LIMITATIONS 61

in which the output variable is involved. It is certainly possible to redefine—at least in

an ad hoc manner27—the neuron equations in such a way, that the behaviour of a peak

detector circuit can be represented. It is not (yet) clear how to do this elegantly, without

giving up a number of attractive properties of the present set of definitions. A more general

feedback structure may be needed for still other problems, so the solution should not be

too specific for this peak detector example.

Feedback applied externally to the neural network could be useful, as was explained in

section 2.4.3. However, in general the problem with the introduction of feedback is, that

it tends to create nonlinear equations that can no longer be solved explicitly and that may

have multiple solutions even if one doesn’t want that, while guarantees for stability and

monotonicity are much harder to obtain.

With Eqs. (2.2), (2.3) and (2.5), we apparently have created a modelling class that is

definitely more general than the complete class of quasistatic models, but most likely not

general enough to deal with all circuits in which a state variable directly or indirectly

determines its own future via a nonlinear operation.

27An obvious procedure would be to define (some) neurons having differential equations that are close
to, or even identical to, the differential equation of the diode-capacitor combination.

62 CHAPTER 2. DYNAMIC NEURAL NETWORKS

63

Chapter 3

Dynamic Neural Network
Learning

In this chapter, learning techniques are developed for both time domain and small-signal

frequency domain representations of behaviour. These techniques generalize the backprop-

agation theory for static feedforward neural networks to learning algorithms for dynamic

feedforward neural networks.

As a special topic, section 3.3 will discuss how monotonicity of the static response of

feedforward neural networks can be guaranteed via parameter constraints imposed during

learning.

3.1 Time Domain Learning

This section first describes numerical techniques for solving the neural differential equa-

tions in the time domain. Time domain analysis by means of numerical time integration

(and differentiation) is often called transient analysis in the context of circuit simulation.

Subsequently, the sensitivity of the solutions for changes in neural network parameters is

derived. This then forms the basis for neural network learning by means of gradient-based

optimization schemes.

3.1.1 Transient Analysis and Transient & DC Sensitivity

3.1.1.1 Time Integration and Time Differentiation

There exist many general algorithms for numerical integration, providing trade-offs be-

tween accuracy, time step size, stability and algorithmic complexity. See for instance

[9] or [29] for explicit Adams-Bashforth and implicit Adams-Moulton multistep methods.

64 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

The first-order Adams-Bashforth algorithm is identical to the Forward Euler integration

method, while the first-order Adams-Moulton algorithm is identical to the Backward Euler

integration method. The second-order Adams-Moulton algorithm is better known as the

trapezoidal integration method.

For simplicity of presentation and discussion, and to avoid the intricacies of automatic

selection of time step size and integration order1, we will in the main text only consider

the use of one of the simplest, but numerically very stable—“A-stable” [29]—methods:

the first order Backward Euler method for variable time step size. This method yields

algebraic expressions of modest complexity, suitable for a further detailed discussion in

this thesis.

In a practical implementation, it may be worthwhile2 to also have the trapezoidal inte-

gration method available, since it provides a much higher accuracy for sufficiently small

time steps, while this method is also A-stable. Appendix D describes a generalized set

of expressions that applies to the Backward Euler method, the trapezoidal integration

method and the second order Adams-Bashforth method.

Equation (2.2) for layer k > 0 can be rewritten into two first order differential equations

by introducing an auxiliary variable zik as in F(sik, δik) = yik + τ1,ik
dyik
dt + τ2,ik

dzik
dt

zik = dyik
dt

(3.1)

We will apply the Backward Euler integration method to Eq. (3.1), according to the

substitution scheme [10]

f (x, ẋ, t) = 0 → f

(
x ,

x− x′

h
, t

)
= 0 (3.2)

with a local time step h—which may vary in subsequent time steps, allowing for non-
1Automatic selection of time step size and integration order would be of limited value in our application,

because the input signals to the neural networks will be specified by values at discrete time points, with
unknown intermediate values. Therefore, precision is already limited by the preselected time steps in
the input signals. Furthermore, it is assumed that the dynamic behaviour within the neural network
will usually be comparable—w.r.t. dominant time constants—to the dynamic behaviour of the input and
target signals, such that there is no real need to take smaller time steps than specified for these signals.
Although it would be valuable to at least check these assumptions by monitoring the local truncation
errors (cf. section 3.1.2) of the integration scheme, this refinement is not considered of prime importance
at the present stage of algorithmic development.

2Time domain errors are caused by the approximative numerical differentiation of network input signals
and the accumulating local truncation errors due to the approximative numerical integration methods. In
particular during simultaneous time domain and frequency domain optimization, to be discussed further
on, these numerical errors cause a slight inconsistency between time domain and frequency domain results:
e.g., a linear(ized) neural network will not respond in exactly the same way to a sine wave input when
comparing time domain response with frequency domain response.

3.1. TIME DOMAIN LEARNING 65

equidistant time points—and again denoting values at the previous time point by accents

(
′
). This gives the algebraic equations

 F(sik, δik) = yik +
τ1,ik

h (yik − y
′
ik) +

τ2,ik

h (zik − z
′
ik)

zik = yik − y
′
ik

h

(3.3)

Now we have the major advantage that we can, due to the particular form of the differential

equations (3.1), explicitly solve Eq. (3.3) for yik and zik to obtain the behaviour as a

function of time, and we find for layer k > 0


yik =

F(sik, δik) + (
τ1,ik

h +
τ2,ik

h2) y
′
ik +

τ2,ik

h z
′
ik

1 +
τ1,ik

h +
τ2,ik

h2

zik = yik − y
′
ik

h

(3.4)

for which the sik are obtained from

sik =
Nk−1∑
j=1

wijk yj,k−1 − θik +
Nk−1∑
j=1

vijk zj,k−1 (3.5)

where Eq. (3.1) was used to eliminate the time derivative dyj,k−1/dt from Eq. (2.3). How-

ever, for layer k = 1, the required zj,0 in Eq. (3.5) are not available from the time inte-

gration of a neural differential equation in a preceding layer. Therefore, the zj,0 have to

be obtained separately from a finite difference formula applied to the imposed network

inputs yj,0, for example using zj,0
4
= (yj,0 − y

′
j,0)/h, although a more accurate numerical

differentiation method may be preferred3.

Initial neural states for any numerical integration scheme immediately follow from forward

propagation of the explicit equations for the so-called “implicit dc” analysis4, giving the

3During learning, the computational complexity of the selected numerical differentiation method hardly
matters: the zj,0 may in a practical implementation be calculated in a pre-processing phase, because the
yj,0 network inputs are independent of the topology and parameters of the neural network.

4Here the word “implicit” only refers to the fact that a request for a transient analysis implies the need
for a preceding dc analysis to find an initial state as required to properly start the transient analysis. This
is merely a matter of prevailing terminology in the area of circuit simulation, where the custom is to start a
transient analysis from a dc steady state solution of the circuit equations. Other choices for initialization,
such as large-signal periodic steady state analysis, are beyond the scope of this thesis.

66 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

steady state behaviour of one particular neuron i in layer k > 0 at time t = 0



sik

∣∣∣∣∣
t=0

=
Nk−1∑
j=1

wijk yj,k−1 − θik

yik

∣∣∣∣∣
t=0

= F(sik, δik)

zik

∣∣∣∣∣
t=0

= 0

(3.6)

by setting all time-derivatives in Eqs. (2.2) and (2.3) to zero. Furthermore, zj,0|t=0 = 0

should be the outcome of the above-mentioned numerical differentiation method in order

to keep Eq. (3.5) consistent with Eq. (3.6).

3.1.1.2 Neural Network Transient & DC Sensitivity

The expressions for transient sensitivity, i.e., partial derivatives w.r.t. parameters, can

be obtained by first differentiating Eqs. (3.1) and (3.5) w.r.t. any (scalar) parameter p

(indiscriminate whether p resides in this neuron or in a preceding layer), giving



∂sik
∂p =

Nk−1∑
j=1

[
dwijk

dp
yj,k−1 + wijk

∂yj,k−1

∂p

]
− dθik

dp

+
Nk−1∑
j=1

[
dvijk
dp

zj,k−1 + vijk
∂zj,k−1

∂p

]
∂F
∂p + ∂F

∂sik
∂sik
∂p = ∂yik

∂p +
∂τ1,ik

∂p
dyik
dt + τ1,ik

d
dt

(
∂yik
∂p

)
+
∂τ2,ik

∂p
dzik
dt + τ2,ik

d
dt

(
∂zik
∂p

)
∂zik
∂p = d

dt

(
∂yik
∂p

)

(3.7)

and by subsequently discretizing these differential equations, again using the Backward

Euler method. However, a preferred alternative method is to directly differentiate the

expressions in Eq. (3.3) w.r.t. any parameter p. The resulting expressions for the two

approaches are in this case exactly the same, i.e., independent of the order of differentiation

w.r.t. p and discretization w.r.t. t. Nevertheless, in general it is conceptually better to first

perform the discretization, and only then the differentiation w.r.t. p. Thereby we ensure

that the transient sensitivity expressions will correspond exactly to the discretized time

domain behaviour that will later, in section 3.1.3, be used in the minimization of a time

domain error measure Etr. A separate approximation, by means of time discretization, of a

differential equation and an associated differential equation for its partial derivative w.r.t.

3.1. TIME DOMAIN LEARNING 67

p, would not a priori be guaranteed to lead to consistent results for the error measure

and its gradient: the time discretization of the partial derivative w.r.t. p of a differential

equation need not exactly equal the partial derivative w.r.t. p of the time-discretized

differential equation, if only because different discretization schemes might have been

applied in the two cases.

Following the above procedure, the resulting expressions for layer k > 0 are



∂sik
∂p =

Nk−1∑
j=1

[
dwijk

dp
yj,k−1 + wijk

∂yj,k−1

∂p

]
− dθik

dp

+
Nk−1∑
j=1

[
dvijk
dp

zj,k−1 + vijk
∂zj,k−1

∂p

]
∂yik
∂p =

{
∂F
∂p + ∂F

∂sik

(
∂sik
∂p

)
− ∂τ1,ik

∂p zik

+
[τ1,ik

h +
τ2,ik

h2

] (
∂yik
∂p

)′
− ∂τ2,ik

∂p
(zik − z

′
ik)

h

+
τ2,ik

h

(
∂zik
∂p

)′ }

/

{
1 +

τ1,ik

h +
τ2,ik

h2

}

∂zik
∂p =

(
∂yik
∂p

)
−
(
∂yik
∂p

)′
h

(3.8)

while initial partial derivative values immediately follow from forward propagation of the

steady state equations for layer k > 0



∂sik
∂p

∣∣∣∣
t=0

=
Nk−1∑
j=1

[
dwijk

dp
yj,k−1

∣∣∣∣
t=0

+ wijk
∂yj,k−1

∂p

∣∣∣∣
t=0

]
− dθik

dp
∂yik
∂p

∣∣∣∣
t=0

= ∂F
∂p + ∂F

∂sik
∂sik
∂p

∣∣∣∣
t=0

∂zik
∂p

∣∣∣∣
t=0

= 0

(3.9)

corresponding to dc sensitivity. The ∂yj,0/∂p and ∂zj,0/∂p, occurring in Eqs. (3.8) and

(3.9) for k = 1, are always zero-valued, because the network inputs do not depend on any

network parameters.

The partial derivative notation ∂/∂p was maintained for the parameters τ1,ik and τ2,ik,

because they actually represent the bivariate parameter functions τ1(σ1,ik , σ2,ik) and

τ2(σ1,ik , σ2,ik), respectively. Particular choices for p must be made to obtain expres-

sions for implementation: if residing in layer k, p is one of the parameters δik, θik, wijk,

68 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

vijk, σ1,ik and σ2,ik, using the convention that the (neuron input) weight parameters wijk,

vijk and the threshold θik belong to layer k, since they are part of the definition of sik in

Eq. (2.3).

Derivatives needed to calculate the network output gradient via the linear output scaling

x
(K)
i = αi yiK + βi in Eq. (2.5) are given by



∂x
(K)
i

∂yiK
= αi

∂x
(K)
i

∂αi
= yiK

∂x
(K)
i
∂βi

= 1

(3.10)

where the derivative w.r.t. yiK is used to find network output derivatives w.r.t. network

parameters other than αi and βi, since their influence is “hidden” in the time evolution of

yiK .

If p resides in a preceding layer, Eq. (3.8) can be simplified, and the partial derivatives

can then be recursively found from the expressions

∂sik
∂p =

Nk−1∑
j=1

[
wijk

∂yj,k−1

∂p
+ vijk

∂zj,k−1

∂p

]
∂yik
∂p =

{
∂F
∂sik

(
∂sik
∂p

)
+
[τ1,ik

h +
τ2,ik

h2

] (
∂yik
∂p

)′
+

τ2,ik

h

(
∂zik
∂p

)′ }

/

{
1 +

τ1,ik

h +
τ2,ik

h2

}

∂zik
∂p =

(
∂yik
∂p

)
−
(
∂yik
∂p

)′
h

(3.11)

until one “hits” the layer where the parameter resides. The actual evaluation can be done

in a feedforward manner to avoid recursion. Initial partial derivative values in this scheme

for parameters in preceding layers follow from the dc sensitivity expressions

∂sik
∂p

∣∣∣∣
t=0

=
Nk−1∑
j=1

wijk
∂yj,k−1

∂p

∣∣∣∣
t=0

∂yik
∂p

∣∣∣∣
t=0

= ∂F
∂sik

∂sik
∂p

∣∣∣∣
t=0

∂zik
∂p

∣∣∣∣
t=0

= 0

(3.12)

3.1. TIME DOMAIN LEARNING 69

All parameters for a single neuron i in layer k together give rise to a neuron parameter

vector p(i,k), here for instance

p(i,k) = (wi,1,k , · · · , wi,Nk−1,k︸ ︷︷ ︸
Nk−1 neuron inputs

, θik , vi,1,k , · · · , vi,Nk−1,k︸ ︷︷ ︸
Nk−1 neuron inputs

, δik , σ1,ik , σ2,ik)T (3.13)

where the τ ’s follow from τ1,ik = τ1(σ1,ik , σ2,ik) and τ2,ik = τ2(σ1,ik , σ2,ik). All neuron

i parameter vectors p(i,k) within a particular layer k may be strung together to form a

vector p(k), and these vectors may in turn be joined, also including the components of the

network output scaling vectors α = (α1 , · · · , αNK)T and β = (β1 , · · · , βNK)T, to form

the network parameter vector p.

In practice, we may have to deal with more than one time interval (section) with associated

time-dependent signals, or waves, such that we may denote the is-th discrete time point

in section s by ts,is . (For every starting time ts,1 an implicit dc is performed to initialize

a new transient analysis.) Assembling all the results obtained thus far, we can calculate

at every time point ts,is the network output vector x(K), and the time-dependent NK-row

transient sensitivity derivative matrix Dtr = Dtr(ts,is) for the network output defined by

Dtr(ts,is)
4
=

∂x(K)(ts,is)
∂p

(3.14)

which will be used in gradient-based learning schemes to determine values for all the

elements of p. That next step will be covered in section 3.1.3.

3.1.2 Notes on Error Estimation

The error5 of the finite difference approximation zj,0 = (yj,0 − y
′
j,0)/h for the time deriva-

tives of the neural network inputs, as given in the previous section, is at most proportional

to h for sufficiently small h. In other words, the approximation error is O(h), as immedi-

ately follows from a Taylor expansion of a function f around a point tn of the (backward)

form

f(tn − h) = f(tn) − h
df
dt

∣∣∣∣
t=tn

+ O(h2)

⇔ df
dt

∣∣∣∣
t=tn

=
f(tn)− f(tn − h)

h
+ O(h) (3.15)

5We will neglect the contribution of roundoff errors that arise due to finite machine precision relevant
to a software implementation on a digital computer. Roughly speaking, we try to use large time steps
for computational efficiency. As a consequence, the change per time step in the state variables also tends
to become large, thus reducing the relative contribution of roundoff errors. On the other hand, the local
truncation errors of the numerical integration method tend to grow superlinearly with the size of the time
step, thereby generally causing the local truncation errors to dominate the total error per time step.

70 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

However, this approximation error does not accumulate for given network inputs, contrary

to the local truncation error in numerical integration.

The local truncation error is the integration error made in one time step as a consequence

of the discretization of the differential equation. The size of the local truncation error of

the Backward Euler integration method is O(h2), but this error accumulates—assuming

equidistant time points—to a global truncation error that is also O(h) due to the O(h−1)

time steps in a given simulation time interval6. Similarly, the O(h3) local truncation error

of the trapezoidal integration method would accumulate to an O(h2) global truncation

error, in that case motivating the use of an O(h2) numerical differentiation method at the

network input, for example

df
dt

∣∣∣∣
t=tn

≈ f(tn+1)− f(tn)
tn+1 − tn

− f(tn+1)− f(tn−1)
tn+1 − tn−1

+
f(tn)− f(tn−1)

tn − tn−1
(3.16)

where the right-hand side is the exact time derivative at tn of a parabola interpolating

the points (tn−1, f(tn−1)), (tn, f(tn)) and (tn+1, f(tn+1)). A Taylor expansion of this

expression then yields

df
dt

∣∣∣∣
t=tn

=
f(tn + h)− f(tn − h)

2h
+ O(h2) (3.17)

for equidistant time points, i.e., for tn+1 − tn = tn − tn−1 = h.

The network inputs at “future” points tn+1 are during neural network learning already

available from the pre-determined training data. When these are not available, one may

resort to a Backward Differentiation Formula (BDF) to obtain accurate approximations

of the time derivative at tn from information at present and past time points [9]. The

BDF of order m will give the exact time derivative at tn of an m-th degree polynomial

interpolating the network input values at the m + 1 time points tn , . . . , tn−m , while

causing an error O(hm) in the time derivative of the underlying (generally unknown) real

network input function, assuming that the latter is sufficiently smooth—at least Cm+1.

3.1.3 Time Domain Neural Network Learning

The neural network parameter elements in p have to be determined through some kind

of optimization on training data. For the dc behaviour, applied voltages on a device can
6A more thorough discussion of the relation between local truncation errors and global truncation errors

can be found in [29]. It is conceptually wrong to simply add the local truncation errors up to arrive at the
global truncation error, because a local truncation error in one time step changes the initial conditions for
the next time step, thereby tracking a different solution with different subsequent local truncation errors.
However, a more careful analysis still leads to the basic result that, if the local truncation errors in the
numerical solution are O(hm+1), then the global truncation error is O(hm).

3.1. TIME DOMAIN LEARNING 71

be used as input to the network, and the corresponding measured or simulated terminal

currents as the desired or target output of the network (the target output could in fact

be viewed as a special kind of input to the network during learning). For the transient

behaviour, complete waves involving (vectors of) these currents and voltages as a function

of (discretized) time are needed to describe input and target output. In this thesis, it is

assumed that the transient behaviour of the neural network is initialized by an implicit

dc analysis at the first time point t = 0 in each section. Large-signal periodic steady state

analysis is not considered.

The learning phase of the network consists of trying to model all the specified dc and

transient behaviour as closely as possible, which therefore amounts to an optimization

problem. The dc case can be treated as a special case of transient analysis, namely for

time t = 0 only. We can describe a complete transient training set Str for the network as

a collection of tuples. A number of time sections s can be part of Str. Each tuple contains

the discretized time ts,is , the network input vector x(0)
s,is

, and the target output vector

x̂s,is , where the subscripts s, is refer to the is-th time point in section s. Therefore, Str

can be written as

Str =
{

sections s, samples is : (ts,is , x
(0)
s,is

, x̂s,is)
}

(3.18)

Only one time sample per section ts,is=1 = 0 is used to specify the behaviour for a particular

dc bias condition. The last time point in a section s is called Ts. The target outputs x̂s,is
will generally be different from the actual network outputs x(K)(ts,is), resulting from

network inputs x(0)
s,is

at times ts,is . The local time step size h used in the previous sections

is simply one of the ts,is+1 − ts,is .

When dealing with device or subcircuit modelling, behaviour can in general7 be charac-

terized by (target) currents î(t) flowing for given voltages v(t) as a function of time t.

Here î is a vector containing a complete set of independent terminal currents. Due to

the Kirchhoff current law, the number of elements in this vector will be one less than the

number of device terminals. Similarly, v contains a complete set of independent voltages.

Their number is also one less than the number of device terminals, since one can take one

terminal as a reference node (a shared potential offset has no observable physical effect in

7If, however, input and output loading effects of a device, or, more likely, a subcircuit, may be neglected,
one may make the training set represent a direct mapping from a set of input voltages and/or currents to
another set of input voltages and/or currents now associated with a different set of terminals. Although this
situation is not as general, it can be of use to the modelling of idealized circuits having a unidirectional
signal flow, as in combinatorial (fuzzy or nonfuzzy) logic. Because this application is less general, and
because it does not make a basic difference to the neural non-quasistatic modelling theory, we do not
pursue the formal consequences of this matter in this thesis.

72 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

classical physics). See also the earlier discussion, and Fig. 2.1, in section 2.1.2. In such

an î(v(t)) representation the vectors v and î would therefore be of equal length, and the

neural network contains identical numbers of inputs (independent voltages) and outputs

(independent currents). The training set would take the form

Str
′ =

{
sections s, samples is : (ts,is , vs,is , îs,is)

}
(3.19)

and the actual response of the neural network would provide i(v(ts,is)) corresponding

to x(K)(x(0)(ts,is)). Normally one will apply the convention that the j-th element of v

refers to the same device or subcircuit terminal as the j-th element of î or i. Device

or subcircuit parameters for specifying geometry or temperature can be incorporated by

assigning additional neural network inputs to these parameters, as is shown in Appendix B.

Returning to our original general notation of Eq. (3.18), we now define a time domain

error measure Etr for accumulating the errors implied by the differences between actual

and target outputs over all network outputs (represented by a difference vector), over all

time points indexed by is , and over all sections s,

Etr
4
=
∑
s

∑
is

Etr

(
x(K)(ts,is)− x̂s,is

)
(3.20)

where the error function Etr(·) is a function having a single, hence global, minimum at the

point where its vector argument is zero-valued. Usually one will for semantical reasons

prefer a function E that fulfills Etr(0) = 0, although this is not strictly necessary.

Etr is just the discrete-time version of the continuous-time cost function Ctr, often en-

countered in the literature:

Ctr
4
=
∑
s

∫ Ts

0
Etr

(
x(K)(ts)− x̂s(ts)

)
dts (3.21)

However, target waves of physical systems can in practice rarely be specified by contin-

uous functions (even though their behaviour is continuous, one simply doesn’t know the

formula’s that capture that behaviour), let alone that the integration could be performed

analytically. Therefore, Etr is much more practical than Ctr.

In the literature on optimization, the scalar function Etr of a vector argument is often

simply half the sum of squares of the elements, or in terms of the inner product

Etr(x) =
x · x

2
=
∑
i

x2
i

2
(3.22)

3.1. TIME DOMAIN LEARNING 73

which fulfills Etr(0) = 0.

In order to deal with small (exponentially decreasing or increasing) device currents, still

other modelling-specific definitions for Etr may be used, based on a generalized form

Etr

(
x(K)(ts), x̂s(ts)

)
. These modelling-specific forms for Etr will not be covered in this

thesis.

Some of the most efficient optimization schemes employ gradient information—partial

derivatives of an error function w.r.t. parameters—to speed up the search for a minimum

of a differentiable error function. The simplest—and also one of the poorest—of those

schemes is the popular steepest descent method8. Many variations on this theme exist,

like the addition of a momentum term, or line searches in a particular descent direction.

In the following, the use of steepest descent is described as a simple example case to

illustrate the principles of optimization, but its use is definitely not recommended, due to

its generally poor performance and its non-guaranteed convergence for a given learning

rate. An important aspect of the basic methods described in this thesis is that any general

optimization scheme can be used on top of the sensitivity calculations9. There exists a

vast literature on optimization convergence properties, so we need not separately consider

that problem within our context. Any optimization scheme that is known to be convergent

will also be convergent in our neural network application.

Steepest descent is the basis of the popular error backpropagation method, and many

people still use it to train static feedforward neural networks. The motivation for its use

could be, apart from simplicity, that backpropagation with steepest descent can easily be

written as a set of local rules, where each neuron only needs biasing information entering

in a forward pass through its input weights and error sensitivity information entering

in a backward pass through its output. However, for a software implementation on a

sequential computer, the strict locality of rules is entirely irrelevant, and even on a parallel

computer system one could with most optimization schemes still apply vectorization and

array processing to get major speed improvements.

Steepest descent would imply that the update vector for the network parameters is calcu-

lated from

∆p = −η
(
∂Etr

∂p

)T

(3.23)

where η > 0 is called the learning rate. A so-called momentum term can simply be added

8Steepest descent is also known as gradient descent.
9See Appendix A for a brief discussion on several optimization methods.

74 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

to Eq. (3.23) by using

∆pnew = −η
(
∂Etr

∂p

)T

+ µ∆pprevious (3.24)

where µ ≥ 0 is a parameter controlling the persistence with which the learning scheme

proceeds in a previously used parameter update direction. Typical values for η and µ

used in small static backpropagation neural networks with the logistic activation function

are η = 0.5 and µ = 0.9, respectively. Unfortunately, the steepest descent scheme is not

scaling-invariant, so proper values for η and µmay strongly depend on the problem at hand.

This often results in either extremely slow convergence or in wild non-convergent parameter

oscillations. The fact that we use the gradient w.r.t. parameters of a set of differential

equations with dynamic (electrical) variables in a system with internal state variables

implies that we actually perform transient sensitivity in terms of circuit simulation theory.

With (3.20), we find that

(
∂Etr

∂p

)T

=
∑
s

∑
is

(
∂x(K)(ts,is)

∂p

)T

·
(
∂Etr(x)
∂x

)T
∣∣∣∣∣
x=x(K)(ts,is)−x̂s,is

(3.25)

The first factor has been obtained in the previous sections as the time-dependent transient

sensitivity matrix Dtr = Dtr(ts,is). For Etr defined in Eq. (3.22), the second factor in

Eq. (3.25) would become

(
∂Etr(x)
∂x

)T
∣∣∣∣∣
x=x(K)(ts,is)−x̂s,is

= x(K)(ts,is)− x̂s,is (3.26)

3.2. FREQUENCY DOMAIN LEARNING 75

3.2 Frequency Domain Learning

In this section we consider the small-signal response of dynamic feedforward neural net-

works in the frequency domain. The sensitivity of the frequency domain response for

changes in neural network parameters is derived. As in section 3.1 on time domain learn-

ing, this forms the basis for neural network learning by means of gradient-based opti-

mization schemes. However, here we are dealing with learning in a frequency domain

representation. Frequency domain learning can be combined with time domain learning.

We conclude with a few remarks on the modelling of bias-dependent cut-off frequencies

and on the generality of a combined static (dc) and small-signal frequency domain char-

acterization of behaviour.

3.2.1 AC Analysis & AC Sensitivity

Devices and subcircuits are often characterized in the frequency domain. Therefore, it

may prove worthwhile to provide facilities for optimizing for frequency domain data as

well. This is merely a matter of convenience and conciseness of representation, since a

time domain representation is already completely general.

Conventional small-signal ac analysis techniques neglect the distortion effects due to cir-

cuit nonlinearities. This means that under a single-frequency excitation, the circuit is

supposed to respond only with that same frequency. However, that assumption in general

only holds for linear(ized) circuits, for which responses for multiple frequencies then simply

follow from a linear superposition of results obtained for single frequencies.

The linearization of a nonlinear circuit will only yield the same behaviour as the original

circuit if the signals involved are vanishingly small. If not, the superposition principle no

longer holds. With input signals of nonvanishing amplitude, even a single input frequency

will normally generate more than one frequency in the circuit response: higher harmonics

of the input signal arise, with frequencies that are integer multiples of the input frequency.

Even subharmonics can occur, for example in a digital divider circuit. If a nonlinear circuit

receives signals involving multiple input frequencies, then in principle all integer-weighted

combinations of these input frequencies will appear in the circuit response.

A full characterization in the frequency domain of nonlinear circuits is possible when the

(steady state) circuit response is periodic, since the Fourier transformation is known to be

bijective.

On the other hand, in modelling applications, even under a single-frequency excitation, and

with a periodic circuit response, the storage and handling of a large—in principle infinite—

76 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

number of harmonics quickly becomes prohibitive. The typical user of neural modelling

software is also not likely to be able to supply all the data for a general frequency domain

characterization.

Therefore, a parameter sensitivity facility for a bias-dependent small-signal ac analysis is

probably the best compromise, by extending the general time domain characterization,

which does include distortion effects, with the concise small-signal frequency domain char-

acterization: thus we need (small-signal) ac sensitivity in the optimization procedures in

addition to the transient sensitivity that was discussed before.

Small-signal ac analysis is often just called ac analysis for short.

3.2.1.1 Neural Network AC Analysis

The small-signal ac analysis and the corresponding ac sensitivity for gradient calculations

will now be described for the feedforward dynamic neural networks as defined in the

previous sections. First we return to the single-neuron differential equations (2.2) and

(2.3), which are repeated here for convenience:

τ2(σ1,ik , σ2,ik)
d2yik
dt2

+ τ1(σ1,ik , σ2,ik)
dyik
dt

+ yik = F(sik, δik) (3.27)

sik =
Nk−1∑
j=1

wijk yj,k−1 − θik +
Nk−1∑
j=1

vijk
dyj,k−1

dt
(3.28)

The time-dependent part of the signals through the neurons is supposed to be (vanishingly)

small, and is represented as the sum of a constant (dc) term and a (co)sinusoidal oscillation

sik = s
(dc)
ik + Re

(
Sike

ωt
)

(3.29)

yik = y
(dc)
ik + Re

(
Yike

ωt
)

(3.30)

with frequency ω and time t, and small magnitudes |Sik|, |Yik| ; the phasors Sik and

Yik are complex-valued. (The capitalized notation Yik should not be confused with the

admittance matrix that is often used in the physical or electrical modelling of devices

and subcircuits.) Substitution of Eqs. (3.29) and (3.30) in Eq. (3.27), linearizing the

nonlinear function around the dc solution, hence neglecting any higher order terms, and

then eliminating the dc offsets using the dc solution

y
(dc)
ik = F(s(dc)

ik , δik) (3.31)

3.2. FREQUENCY DOMAIN LEARNING 77

yields

Re
(
−ω2τ2,ikYike

ωt
)

+ Re
(
ωτ1,ikYike

ωt
)

+ Re
(
Yike

ωt
)

=

Re
(
Sike

ωt
)
· ∂F
∂sik

∣∣∣
s
(dc)
ik

,δik

(3.32)

Since Re(a) + Re(b) = Re(a+ b) for any complex a and b , and also λRe(a) = Re(λa) for

any real λ, we obtain

Re
(
− ω2τ2,ikYike

ωt + ωτ1,ikYike
ωt + Yike

ωt
)

=

Re

(
Sike

ωt · ∂F
∂sik

∣∣∣
s
(dc)
ik

,δik

) (3.33)

This equation must hold at all times t. For example, substituting t = 0 and t = π
2ω (making

use of the fact that Re(a) = −Im(a) for any complex a), and afterwards combining the

two resulting equations into one complex equation, we obtain the neuron ac equation

− ω2τ2,ikYik + ωτ1,ikYik + Yik = Sik · ∂F
∂sik

∣∣∣
s
(dc)
ik

,δik
(3.34)

We can define the single-neuron transfer function

Tik(ω)
4
=

Yik(ω)
Sik(ω)

=

∂F
∂sik

∣∣∣
s
(dc)
ik

,δik

1 + ωτ1,ik − ω2τ2,ik
(3.35)

which characterizes the complex-valued ac small-signal response of an individual neuron to

its own net input. This should not be confused with the elements of the transfer matrices

H(k), as defined further on. The elements of H(k) will characterize the output response

of a neuron in layer k w.r.t. to a particular network input. Tik is therefore a “local”

transfer function. It should also be noted, that Tik could become infinite. For instance

with τ1,ik = 0 and ω2τ2,ik = 1. This situation corresponds to the time domain differential

equation

τ2,ik
d2yik
dt2

+ yik = F(sik, δik) (3.36)

from which one finds that substitution of yik = c+ a cos(ωt), with real-valued constants a

and c, and ω2τ2,ik = 1, yields F(sik, δik) = c, such that the time-varying part of sik must

be zero (or vanishingly small); but then the ratio of the time-varying parts of yik and sik

must be infinite, as was implied by the transfer function Tik. The oscillatory behaviour in

yik has become self-sustaining, i.e., we have resonance. This possibility can be excluded by

using appropriate parameter functions τ1,ik = τ1(σ1,ik , σ2,ik) and τ2,ik = τ2(σ1,ik , σ2,ik).

78 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

As long as τ1,ik 6= 0, we have a term that prevents division by zero through an imaginary

part in the denominator of Tik .

The ac relations describing the connections to preceding layers will now be considered, and

will largely be presented in scalar form to keep their correspondence to the feedforward

network topology more visible. This is often useful, also in a software implementation, to

keep track of how individual neurons contribute to the overall neural network behaviour.

For layer k > 1, we obtain from Eq. (3.28)

Sik =
Nk−1∑
j=1

(wijk + ω vijk) Yj,k−1 (3.37)

since the θik only affect the dc part of the behaviour. Similarly, from Eq. (2.4), for the

neuron layer k = 1 connected to the network input

Si,1 =
N0∑
j=1

(wij,1 + ω vij,1) X(0)
j (3.38)

with phasor X(0)
j the complex j-th ac source amplitude at the network input, as in

x
(0)
j = x

(0,dc)
j + Re

(
X

(0)
j eωt

)
(3.39)

which in input vector notation obviously takes the form

x(0) = x(0,dc) + Re
(
X(0)eωt

)
(3.40)

The output of neurons in the output layer is of the form

yiK = y
(dc)
iK + Re

(
YiKe

ωt
)

(3.41)

At the output of the network, we obtain from Eq. (2.5) the linear phasor scaling transfor-

mation

X
(K)
i = αi YiK (3.42)

since the βi only affect the dc part of the behaviour. The network output can also be

written in the form

x
(K)
j = x

(K,dc)
j + Re

(
X

(K)
j eωt

)
(3.43)

with its associated vector notation

x(K) = x(K,dc) + Re
(
X(K)eωt

)
(3.44)

3.2. FREQUENCY DOMAIN LEARNING 79

The small-signal response of the network to small-signal inputs can for a given bias and

frequency be characterized by a network transfer matrix H. The elements of this complex

matrix are related to the elements of the transfer matrix H(K) for neurons i in the output

layer via

(H)ij = αi (H(K))ij (3.45)

When viewed on the network scale, the matrix H relates the network input phasor vector

X(0) to the network output phasor vector X(K) through

X(K) = H X(0) (3.46)

The complex matrix element (H)ij can be obtained from a device or subcircuit by observ-

ing the i-th output while keeping all but the j-th input constant. In that case we have

(H)ij = X
(K)
i /X

(0)
j , i.e., the complex matrix element equals the ratio of the i-th output

phasor and the j-th input phasor.

Transfer matrix relations among subsequent layers are given by

(H(k))ij = Tik

Nk−1∑
n=1

(wink + ωvink) (H(k−1))nj (3.47)

where j still refers to one of the network inputs, and k = 1, · · · ,K can be used if we define

a (dummy) network input transfer matrix via Kronecker delta’s as

(H(0))nj
4
= δnj (3.48)

The latter definition merely expresses how a network input depends on each of the network

inputs, and is introduced only to extend the use of Eq. (3.47) to k = 1. In Eq. (3.47), two

transfer stages can be distinguished: the weighted sum, without the Tik factor, represents

the transfer from outputs of neurons n in the preceding layer k − 1 to the net input Sik,

while Tik represents the transfer factor from Sik to Yik through the single neuron i in layer

k.

3.2.1.2 Neural Network AC Sensitivity

For learning or optimization purposes, we will need the partial derivatives of the ac neural

network response w.r.t. parameters, i.e., ac sensitivity. From Eqs. (3.34) and (3.35) we

have

∂F
∂sik

∣∣∣∣
s
(dc)
ik

,δik

=
(
1 + ωτ1,ik − ω2τ2,ik

)
Tik (3.49)

80 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

and differentiation w.r.t. any parameter p gives for any particular neuron

∂2F
∂s2

ik

∣∣∣∣
s
(dc)
ik

,δik

· ∂s
(dc)
ik
∂p + ∂2F

∂δik∂sik

∣∣∣∣
s
(dc)
ik

,δik

· dδik
dp =

(
1 + ωτ1,ik − ω2τ2,ik

) ∂Tik
∂p +

(
ω
∂τ1,ik

dp − ω2∂τ2,ik

dp

)
Tik

(3.50)

from which ∂Tik
∂p can be obtained as

∂Tik
∂p =

{
∂2F
∂s2

ik

∣∣∣∣
s
(dc)
ik

,δik

· ∂s
(dc)
ik
∂p + ∂2F

∂δik∂sik

∣∣∣∣
s
(dc)
ik

,δik

· dδik
dp

−
(
ω

∂τ1,ik

∂p − ω2 ∂τ2,ik

∂p

)
Tik

}

/

{
1 + ω τ1,ik − ω2 τ2,ik

}
(3.51)

Quite analogous to the transient sensitivity analysis section, it is here still indiscriminate

whether p resides in this particular neuron (layer k, neuron i) or in a preceding layer. Also,

particular choices for p must be made to obtain explicit expressions for implementation: if

residing in layer k, p is one of the parameters δik, θik, wijk, vijk, σ1,ik and σ2,ik, using the

convention that the (neuron input) weight parameters wijk, vijk, and threshold θik belong

to layer k, since they are part of the definition of sik in Eq. (3.28). Therefore, if p resides

in a preceding layer, Eq. (3.51) simplifies to

∂Tik
∂p

=

∂2F
∂s2

ik

∣∣∣∣
s
(dc)
ik

,δik

· ∂s
(dc)
ik
∂p

1 + ωτ1,ik − ω2τ2,ik
(3.52)

The ac sensitivity treatment of connections to preceding layers runs as follows. For layer

k > 1, we obtain from Eq. (3.37)

∂Sik
∂p

=
Nk−1∑
j=1

[(
dwijk

dp
+ ω

dvijk
dp

)
Yj,k−1 + (wijk + ω vijk)

∂Yj,k−1

∂p

]
(3.53)

and similarly, from Eq. (3.38), for the neuron layer k = 1 connected to the network input

∂Si,1
∂p

=
N0∑
j=1

(
dwij,1

dp
+ ω

dvij,1
dp

)
X

(0)
j (3.54)

since X(0)
j is an independent complex j-th ac source amplitude at the network input.

3.2. FREQUENCY DOMAIN LEARNING 81

For the output of the network, we obtain from Eq. (3.42)

∂X
(K)
i

∂p
=

dαi
dp

YiK + αi
∂YiK
∂p

(3.55)

In terms of transfer matrices, we obtain from Eq. (3.45), by differentiating w.r.t. p

∂(H)ij
∂p

=
dαi
dp

(H(K))ij + αi
∂(H(K))ij

∂p
(3.56)

and from Eq. (3.47)

∂(H(k))ij
∂p

=
∂Tik
∂p

Nk−1∑
n=1

(wink + ωvink) (H(k−1))nj

+ Tik

Nk−1∑
n=1

[(
dwink

dp
+ ω

dvink
dp

)
(H(k−1))nj

+ (wink + ωvink)
∂(H(k−1))nj

∂p

]
(3.57)

for k = 1, · · · ,K, with

∂(H(0))nj
∂p

= 0 (3.58)

from differentiation of Eq. (3.48). It is worth noting, that for parameters p residing in

the preceding (k − 1)-th layer, ∂(H(k−1))nj/∂p will be nonzero only if p belongs to the

n-th neuron in that layer. However, ∂Tik/∂p is generally nonzero for any parameter of

any neuron in the (k− 1)-th layer that affects the dc solution, from the second derivatives

w.r.t. s in Eq. (3.50).

3.2.2 Frequency Domain Neural Network Learning

We can describe an ac training set Sac for the network as a collection of tuples. Transfer

matrix “curves” can be specified as a function of frequency f (with ω = 2πf) for a number

of dc bias conditions b characterized by network inputs x(0)
b . Each tuple of Sac contains for

some bias condition b an ib-th discrete frequency fb,ib , and for that frequency the target

transfer matrix10 Ĥb,ib , where the subscripts b, ib refer to the ib-th frequency point for bias
10For practical purposes in optimization, one could in a software implementation interpret any zero-

valued matrix elements in Ĥb,ib either as (desired) zero outcomes, or, alternatively, as don’t-cares if one
wishes to avoid introducing separate syntax or symbols for don’t cares. The don’t care interpretation
can—as an option—be very useful if it is not feasible for the user to provide all transfer matrix elements,
for instance if it is considered to be too laborious to measure all matrix elements. In that case one will
want to leave some matrix elements outside the optimization procedures.

82 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

condition b. Therefore, Sac can be written as

Sac =
{

bias b with dc input x(0)
b , samples ib : (fb,ib , Ĥb,ib)

}
(3.59)

Analogous to the treatment of transient sensitivity, we will define a 3-dimensional ac

sensitivity tensor Dac, which depends on dc bias and on frequency. Assembling all network

parameters into a single vector p, one may write

Dac(fb,ib)
4
=

∂H(fb,ib)
∂p

(3.60)

which will be used in optimization schemes. Each of the complex-valued sensitivity tensors

Dac(fb,ib) can be viewed as (sliced into) a sequence of derivative matrices, each derivative

matrix consisting of the derivative of the transfer matrix H w.r.t. one particular (scalar)

parameter p. The elements ∂(H)ij
∂p of these matrices follow from Eq. (3.56).

We still must define an error function for ac, thereby enabling the use of gradient-based

optimization schemes like steepest descent, or the Fletcher-Reeves and Polak-Ribiere con-

jugate gradient optimization methods [16]. If we follow the same lines of thought and

similar notations as used in section 3.1.3, we may define a frequency domain error mea-

sure Eac for accumulating the errors implied by the differences between actual and target

transfer matrix (represented by a difference matrix), over all frequencies indexed by ib and

over all bias conditions b (for which the network was linearized). This gives

Eac
4
=
∑
b

∑
ib

Eac

(
H(fb,ib)− Ĥb,ib

)
(3.61)

By analogy with Etr in Eq. (3.22), we could choose a sum-of-squares form, now extended

to complex matrices A via

Eac(A) =
∑
k,l

(A)∗k,l(A)k,l
2

=
∑
k,l

|(A)k,l|2

2

=
∑
k,l

(Re ((A)k,l))
2 + (Im ((A)k,l))

2

2
(3.62)

which is just half the sum of the squares of the amplitudes of all the complex-valued matrix

elements. From the last expression in Eq. (3.62) it is also clear, that credit (debit) for

(in)correct phase information is explicitly present in the definition of Eac. The derivative

3.2. FREQUENCY DOMAIN LEARNING 83

of Eac w.r.t. the real-valued parameter vector p is given by

∂Eac(A)
∂p

=
∑
k,l

[
Re ((A)k,l) Re

(
∂(A)k,l
∂p

)
+ Im ((A)k,l) Im

(
∂(A)k,l
∂p

)]
(3.63)

With A = H(fb,ib)−Ĥb,ib we see that the
∂(A)k,l
∂p =

∂(H(fb,ib))k,l
∂p are the elements of the

bias and frequency dependent ac sensitivity tensor Dac = Dac(fb,ib) obtained in Eq. (3.60).

So Eqs. (3.62) and (3.63) can be evaluated from the earlier expressions.

For Eac in Eq. (3.61) we simply have

∂Eac

∂p
=
∑
b

∑
ib

∂Eac

(
H(fb,ib)− Ĥb,ib

)
∂p

(3.64)

Once we have defined scalar functions Eac and Eac, we may apply any general gradient-

based optimization scheme on top of the available data. To illustrate the similarity with

the earlier treatment of time domain neural network learning, we can immediately write

down the expression for ac-optimization by steepest descent with a momentum term

∆pnew = −η
(
∂Eac

∂p

)T

+ µ∆pprevious (3.65)

Of course, one can easily combine time domain optimization with frequency domain opti-

mization, for instance by minimizing λ1Etr + λ2Eac through

∆pnew = −η
[
λ1

(
∂Etr

∂p

)T

+ λ2

(
∂Eac

∂p

)T
]

+ µ∆pprevious (3.66)

where λ1 and λ2 are constants for arbitrarily setting the relative weights of time domain

and frequency domain optimization. Their values may be set during a pre-processing phase

applied to the time domain and frequency domain target data. An associated training set

S is constructed by the union of the sets in Eqs. (3.18) and (3.59) as in

S = Str ∪ Sac (3.67)

The transient analysis and small-signal ac analysis are based upon exactly the same set of

neural network differential equations. This makes the transient analysis and small-signal

ac analysis mutually consistent to the extent to which we may neglect the time domain

errors caused by the approximative numerical differentiation of network input signals and

the accumulating local truncation errors due to the approximative numerical integration

methods. However, w.r.t. time domain optimization and frequency domain optimization,

we usually have cost functions and target data that are defined independently for both

84 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

domains, such that a minimum of the time domain cost function Etr need not coincide

with a minimum of the frequency domain cost function Eac, even if transient analysis and

small-signal ac analysis are performed without introducing numerical errors.

3.2.3 Example of AC Response of a Single-Neuron Neural Network

As an illustration of the frequency domain behaviour of a neural network, we will calculate

and plot the transfer matrix for the simplest possible network, a 1-1 network consisting

of just a single neuron with a single input. Using a linear function F(sik) = sik, which

could also be viewed as the linearized behaviour of a nonlinear F(sik), we find that the

1× 1 “matrix” H(K) is given by

H(K) = H(ω) = α · w + ωv

1 + ωτ1 − τ2 · ω2 (3.68)

This expression for H(K) is obtained from the application of Eqs. (3.35), (3.45), (3.47)

and (3.48). For this very simple example, one could alternatively obtain the expression

for H(K) “by inspection” directly from Eqs. (2.2), (2.4) and (2.5).

We may set the parameters for an overdamped neuron, as discussed in section 2.3.1, with

Q = 0.4 and ω0 = 1010 rad/s, such that τ1 = 1/(ω0Q) = 2.5 · 10−10s and τ2 = 1/ω2
0 =

10−20s2, and use α = 1, w = 1, and v = 10−9. Fig. 3.1 shows the complex-valued transfer

H(ω) for this choice of parameters in a 3-dimensional parametric plot. Also shown are the

projections of the real and imaginary parts of H(ω) onto the sides of the surrounding box.

Fig. 3.2 shows the real and imaginary parts of H(ω), as well as the magnitude |H(ω)|.

It is clear from these figures that H(ω) has a vanishing imaginary part for very low

frequencies, while the transfer magnitude |H(ω)| vanishes for very high frequencies due

to the nonzero τ2. |H(ω)| here peaks11 in the neighbourhood of ω0. The fact that at low

frequencies the imaginary part increases with frequency is typical for quasistatic models

of 2-terminal devices. However, with quasistatic models the imaginary part would keep

increasing up to infinite frequencies, which would be unrealistic.

3.2.4 On the Modelling of Bias-Dependent Cut-Off Frequencies

Another important observation is that for a single neuron the eigenvalues, and hence the

eigenfrequencies and cut-off frequencies, are bias-independent. In general, a device or

subcircuit may have small-signal eigenfrequencies that are bias dependent.
11This kind of peak should not be confused with the near-resonance peaks arising from Q � 1

2
, like

those shown in Fig. 2.8 for Q = 2 and Q = 4. Here we have Q = 0.4 < 1
2
, but the additional contribution

ωv in Eq. (3.68) now causes |H(ω)| to increase with frequency at low frequencies.

3.2. FREQUENCY DOMAIN LEARNING 85

0

1

2

3

4

Re(H)

8

10

12

log(omega)

-2

-1

0

1

Im(H)

0

1

2

3

4

Re(H)

8

10

12

log(omega)

-2

-1

0

1

Im(H)

Figure 3.1: Single-neuron network with H(ω) = 1 + 2.5 · 10−10 · ω
1 + 10−10 · ω − 10−20 · ω2 .

8 9 10 11 12 13
log(omega)

-2

-1

1

2

3

4

Figure 3.2: Re (H(ω)) (dotted), Im (H(ω)) (dashed), and |H(ω)| (solid).

86 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

Nevertheless, a network constructed of neurons as described by Eqs. (2.2) and (2.3) can

still overcome this apparent limitation, because the transfer of signals to the network

output is bias dependent: the derivative w.r.t. sik of the neuron input nonlinearity F2

varies, with bias, within the range [0, 1]. The small-signal transfer through the neuron

can therefore be controlled by the input bias sik. By gradually switching neurons with

different eigenfrequencies on or off through the nonlinearity, one can still approximate the

behaviour of a device or subcircuit with bias-dependent eigenfrequencies. For instance, in

modelling the bias-dependent cut-off frequency of bipolar transistors, which varies typically

by a factor of about two within the relevant range of controlling collector currents, one

can get very similar shifts in the effective cut-off frequency by calculating a bias-weighted

combination of two (or more) bias-independent frequency transfer curves, having different,

but constant, cut-off frequencies. This approach works as long as the range in cut-off

frequencies is not too large; e.g., with the cut-off frequencies differing by no more than

a factor of about two in a bias-weighted combination of two bias-independent frequency

transfer curves. Otherwise, a kind of step (intermediate level) is observed in the frequency

transfer curves12.

As a concrete illustration of this point, one may consider the similarity of the transfer

curves

H1(ω, x) =
1

1 + ω
[
x
ω2

+ 1− x
ω1

] (3.69)

which represents an x-bias dependent first order cut-off frequency, and

H2(ω, x) =
x

1 +  ωω2

+
1− x

1 +  ωω1

(3.70)

in which two curves with constant cut-off frequencies are weighted by bias-dependent

factors. In a log-log plot, with x in [0, 1], and ω2/ω1 = 2, this gives results like those

shown in Fig. 3.3, for x ∈ {0, 1
4 ,

1
2 ,

3
4 , 1}. The continuous curves for |H1| are similar to

the dashed curves for |H2|. A better match can, when needed, be obtained by a more

complicated weighting of transfer curves. Results for the phase shift, shown in Fig. 3.4,

are also rather similar for both cases. Consequently, there is still no real need to make

τ1,ik and/or τ2,ik dependent on sik, which would otherwise increase the computational

complexity of the sensitivity calculations. However, it is worthwhile to note that the left-

hand side of Eq. (2.2) would even then give a linear homogeneous differential equation in

yik, so we could still use the analytic results obtained in section 2.3.1 with the parameters

τ1,ik and τ2,ik replaced by functions τ1,ik(sik) and τ2,ik(sik), respectively. If parameter
12However, one can extend the applicability of the procedure by using a bias-weighted combination of

more than two bias-independent frequency transfer curves.

3.2. FREQUENCY DOMAIN LEARNING 87

2.5 3 3.5 4
log(omega)

-20

-15

-10

-5

20 log |H|

Figure 3.3: 20 log(|H1(logω, x)|) (continuous) and 20 log(|H2(logω, x)|) (dashed).

2.5 3 3.5 4
log(omega)

-80

-60

-40

-20

Phase(H)

Figure 3.4: 6 H1(logω, x) (continuous) and 6 H2(logω, x) (dashed), in degrees.

88 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

functions τ1(σ1,ik , σ2,ik) and τ2(σ1,ik , σ2,ik) were used, the same would apply with the

parameters σ1,ik and σ2,ik replaced by functions σ1,ik(sik) and σ2,ik(sik), respectively.

3.2.5 On the Generality of AC/DC Characterization

The question could be raised, how general a small-signal frequency domain characteriza-

tion can be, in combination with dc data, when compared to a large-signal time domain

characterization. This is a fundamental issue, relating to the kind of data that is needed

to fully characterize a device or subcircuit, indiscriminate of any limitations in a subse-

quently applied modelling scheme, and indiscriminate of limitations in the amount of data

that can be acquired in practice.

One could argue, that in a combined ac/dc characterization, the multiple bias points used

in determining the dc behaviour and in setting the linearization points for small-signal ac

behaviour, together provide the generality to capture both nonlinear and dynamic effects.

If the number of bias points and the number of frequency points were sufficiently large,

one might expect that the full behaviour of any device or subcircuit can be represented up

to arbitrary accuracy. The multiple bias conditions would then account for the nonlinear

effects, while the multiple frequencies would account for the dynamic effects.

Intuitively appealing as this argument may seem, it is not valid. This is most easily

seen by means of a counterexample. For this purpose, we will once again consider the

peak detector circuit that was discussed for other reasons in section 2.6. The circuit

consists of a linear capacitor in series with a purely resistive diode, the latter acting as

a nonlinear resistor with a monotonic current-voltage characteristic. The voltage on the

shared node between diode and capacitor follows the one-sided peaks in a voltage source

across the series connection. The diode in this case represents the nonlinearity of the

circuit, while the series connection of a capacitor and a (nonlinear) resistor will lead to

a non-quasistatic response. However, when performing dc and (small-signal) ac analyses,

or dc and ac measurements, the steady state operating point will always be the one with

the full applied voltage across the capacitor, and a zero voltage across the diode. This is

because the dc current through a capacitor is zero, while this current is “supplied” by the

diode which has zero current only at zero bias. Consequently, whatever dc bias is applied

to the circuit, the dc and ac behaviour will remain exactly the same, being completely

insensitive to the overall shape of the monotonic nonlinear diode characteristic—only

the slope of the current-voltage characteristic at (and through) the origin plays a role.

Obviously, the overall shape of the nonlinear diode characteristic would affect the large-

signal time domain behaviour of the peak detector circuit.

Apparently, we here have an example in which one can supply any amount of dc and

3.3. OPTIONAL GUARANTEES FOR DC MONOTONICITY 89

(small-signal) ac data without capturing the full behaviour exhibited by the circuit with

signals of nonvanishing amplitude in the time domain.

3.3 Optional Guarantees for DC Monotonicity

This section shows how feedforward neural networks can be guaranteed to preserve mono-

tonicity in their multidimensional static behaviour, by imposing constraints upon the

values of some of the neural network parameters.

The multidimensional dc current characteristics of devices like MOSFETs and bipolar

transistors are often monotonic in an appropriately selected voltage coordinate system13.

Preservation of monotonicity in the CAD models for these devices is very important to

avoid creating additional spurious circuit solutions to the equations obtained from the

Kirchhoff current law. However, transistor characteristics are typically also very nonlinear,

at least in some of their operating regions, and it turns out to be extremely hard to obtain

a model that is both accurate, smooth, and monotonic.

Table modelling schemes using tensor products of B-splines do guarantee monotonicity

preservation when using a set of monotonic B-spline coefficients [11, 39], but they can-

not accurately describe—with acceptable storage efficiency—the highly nonlinear parts of

multidimensional characteristics. Other table modelling schemes allow for accurate mod-

elling of highly nonlinear characteristics, often preserving monotonicity, but generally not

guaranteeing it. In [39], two such schemes were presented, but guarantees for monotonicity

preservation could only be provided when simultaneously giving up on the capability to

efficiently model highly nonlinear characteristics.

In this thesis, we have developed a neural network approach that allows for highly nonlinear

modelling, due to the choice of F in Eq. (2.6), Eq. (2.7) or Eq. (2.16), while giving infinitely

smooth results—in the sense of being infinitely differentiable. Now one could ask whether

it is possible to include guarantees for monotonicity preservation without giving up the

nonlinearity and smoothness properties. We will show that this is indeed possible, at least

13In this thesis, a multidimensional function is considered monotonic if it is monotonic as a function of
any one of its controlling variables, keeping the remaining variables at any set of fixed values. See also
reference [39]. The fact that monotonicity will generally be coupled to a particular coordinate system can
be seen from the example of a function that is monotonically increasing in one variable and monotonically
decreasing in another variable. Then there will for any given set of coordinate values (a particular point)
be a direction, defined by a linear combination of these two variables, for which the partial derivative of
the function in that new direction is zero. However, at other points the partial derivative in that same
direction will normally be nonzero, or else one would have a very special function that is constant in
that direction. The nonzero values may be positive at one point and negative at another point even with
points lying on a single line in the combination direction, thereby causing nonmonotonic behaviour in the
combination direction in spite of monotonicity in the original directions.

90 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

to a certain extent14.

Recalling that each of the F in Eqs. (2.6), (2.7) and (2.16) is already known to be monoton-

ically increasing in its non-constant argument sik, we will address the necessary constraints

on the parameters of sik, as defined in Eq. (2.3), given only the fact that F is monoton-

ically increasing in sik. To this purpose, we make use of the knowledge that the sum

of two or more (strictly) monotonically increasing (decreasing) 1-dimensional functions is

also (strictly) monotonically increasing (decreasing). This does generally not apply to the

difference of such functions.

Throughout a feedforward neural network, the weights intermix the contributions of the

network inputs. Each of the network inputs contributes to all outputs of neurons in the

first hidden layer k = 1. Each of these outputs in turn contributes to all outputs of

neurons in the second hidden layer k = 2, etc. The consequence is, that any given network

input contributes to any particular neuron through all weights directly associated with

that neuron, but also through all weights of all neurons in preceding layers.

In order to guarantee network dc monotonicity, the number of sign changes by dc weights

wijk must be the same through all paths from any one network input to any one network

output15. This implies that between hidden (non-input, non-output) layers, all intercon-

necting wijk must have the same sign. For the output layer one can afford the freedom to

have the same sign for all wij,K connecting to one output neuron, while this sign may dif-

fer for different output neurons. However, this does not provide any advantage, since the

same flexibility is already provided by the output scaling in Eq. (2.5): the sign of αi can

set (switch) the monotonicity “orientation” (i.e., increasing or decreasing) independently

for each network output. The same kind of sign freedom—same sign for one neuron, but

different signs for different neurons—is allowed for the wij,1 connecting the network inputs

to layer k = 1. Here the choice makes a real difference, because there is no additional

linear scaling of network inputs like there is with network outputs. However, it is hard

to decide upon appropriate signs through continuous optimization, because it concerns a

discrete choice. Therefore, the following algorithm will allow the use of optimization for

positive wijk only, by a simple pre- and postprocessing of the target data.

14Adding constraints to mathematically guarantee some property will usually reduce—for a given
complexity—the expressive power of a modelling scheme, so we must still remain careful about possible
detrimental effects in practice: we might have lost the ability to represent arbitrary monotonic nonlinear
multidimensional static behaviour.

15The θik thresholds do not affect monotonicity, nor do the βi offsets in the network output scaling.

3.3. OPTIONAL GUARANTEES FOR DC MONOTONICITY 91

The algorithm involves four main steps:

1. Select one output neuron, e.g., the first, which will determine the monotonicity

orientation16 of the network.

Optionally verify that the target output of the selected neuron is indeed monotonic

with each of the network inputs, according to the user-specified, or data-derived,

monotonicity orientation. The target data for the other network outputs should—up

to a collective sign change for each individual output—have the same monotonicity

orientation.

2. Add a sign change to the network inputs if the target output for the selected network

output is decreasing with that input. All target outputs are assumed to be monotonic

in the network inputs. Corresponding sign changes are required in any target transfer

matrices specified in the training set, because the elements of the transfer matrices

are (phasor) ratio’s of network outputs and inputs.

3. Optimize the network for positive wijk everywhere in the network. Just as with the

earlier treatment to ensure positive timing parameters, one may apply unconstrained

optimization with network models that contain only the square roots u of the weights

w as the learning parameters, i.e., wijk = u2
ijk, and for instance

sik
4
=

Nk−1∑
j=1

u2
ijk yj,k−1 − θik +

Nk−1∑
j=1

vijk
dyj,k−1

dt
(3.71)

replacing Eq. (2.3). The sensitivity equations derived before need to be modified

correspondingly, but the details of that procedure are omitted here.

4. Finally apply sign changes to all the wij,1 that connect layer k = 1 to the network

inputs of which the sign was reversed in step 2, thus compensating for the temporary

input sign changes.

The choice made in the first step severely restricts the possible monotonicity orientations

for the other network outputs: they have either exactly the same orientation (if their αj
have the same sign as the αi of the selected output neuron), or exactly the reverse (for αj
of opposite sign). This means, for example, that if the selected output is monotonically

increasing as a function of two inputs, it will be impossible to have another output which
16With the monotonicity orientation of a network we here mean the N0 bits of information telling for the

selected network output whether the target data is increasing or decreasing with any particular network
input. For instance, a string “+−−” could be used to denote the monotonicity orientation for a 3-input
network: it would mean that the target data for the selected network output increases with the first
network input and decreases with the two other network inputs.

92 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

increases with one input and decreases with the other: that output will either have to

increase or to decrease with both inputs.

If this is a problem, one can resort to using different networks to separately model the

incompatible outputs. However, in transistor modelling this problem may often be avoided,

because these are gated devices with a main current entering one device terminal, and with

the approximate reverse current entering another terminal to obey the Kirchhoff current

law. The small current of the controlling terminal will generally not affect the monotonicity

orientation of any of the main currents, and need also not be modelled because modelling

the two main currents suffices (again due to the Kirchhoff law), at least for a 3-terminal

device. One example is the MOSFET, where the drain current Id increases with voltages

Vgs and Vgd, while the source current Is decreases with these voltages. Another example

is the bipolar transistor, where the collector current Ic increases with voltages Vbe and Vbc,

while the emitter current Ie decreases with these voltages17.

17The choice of a proper coordinate system here still plays an important role. For instance, it turns
out that with a bipolar transistor the collector current increases but the base current decreases with
increasing Vce and a fixed Vbe; the collector current itself is monotonically increasing in both Vce and Vbe
under normal operating conditions, so this particular choice of (Vce,Vbe) coordinates indeed causes the
monotonicity problem outlined in the main text.

93

Chapter 4

Results

4.1 Experimental Software

This chapter describes some aspects of an ANSI C software implementation of the learn-

ing methods as described in the preceding chapters. The experimental software imple-

mentation, presently measuring some 25000 lines of source code, runs on Apollo/HP425T

workstations using GPR graphics, on PC’s using MS-Windows 95 and on HP9000/735

systems using XWindows graphics. The software is capable of simultaneously simulating

and optimizing an arbitrary number of dynamic feedforward neural networks in time and

frequency domain. These neural networks can have any number of inputs and outputs,

and any number of layers.

4.1.1 On the Use of Scaling Techniques

Scaling is used to make optimization insensitive to units of training data, by applying

a linear transformation—often just an inner product with a vector of scaling factors—to

the inputs and outputs of the network, the internal network parameters and the training

data. By using scaling, it no longer makes any difference to the software whether, say,

input voltages were specified in megavolts or millivolts, or output currents in kiloampères

or microampères.

Some optimization techniques are invariant to scaling, but many of them—e.g., steepest

descent—are not. Therefore, the safest way to deal in general with this potential hazard

is to always scale the network inputs and outputs to a preferred range: one then no longer

needs to bother whether an optimization technique is entirely scale invariant (including

its heuristic extensions and adaptations). Because this scaling only involves a simple pre-

and postprocessing, the computational overhead is generally negligible. Scaling, to bring

numbers closer to 1, also helps to prevent or alleviate additional numerical problems like

94 CHAPTER 4. RESULTS

the loss of significant digits, as well as floating point underflow and overflow.

For dc and transient, the following scaling and unscaling rules apply to the i-th network

input and the m-th network output:

• A multiplicative scaling ai, during preprocessing, of the network input values in the

training data, is undone in the postprocessing (after optimization) by multiplying

the weight parameters wij,1 and vij,1 (i.e., only in network layer k = 1) by this same

network input value data scaling factor. Essentially, one afterwards increases the

sensitivity of the network input stage with the same measure by which the training

input values had been artificially amplified before training was started.

• Similarly, a multiplicative scaling cm of the network target output values, also per-

formed during preprocessing, is undone in the postprocessing by dividing the αm-

and βm-values for the network output layer by the target data scaling factor used in

the preprocessing.

• The scaling of transient time points by a factor τnn, during preprocessing, is undone

in the postprocessing by dividing the vijk- and τ1,ik-values of all neurons by the time

points scaling factor τnn used in the preprocessing. All τ2,ik-values are divided by

the square of this factor, because they are the coefficients of the second derivative

w.r.t. time in the neuron differential equations of the form (2.2).

• A translation scaling by an amount bi may be applied to shift the input data to

positions near the origin.

If we use for the network input i an input shift −bi, followed by a multiplicative scaling ai,

and if we use a multiplicative scaling cm for network output m, and apply a time scaling

τnn, we can write the scaling of training data and network parameters as

ts,is ← τnn ts,is

(x(0)
s,is

)i ← ai
(
(x(0)

s,is
)i − bi

)
(x̂s,is)m ← cm (x̂s,is)m

θi,1 ← θi,1 −
N0∑
j=1

bj wij,1

wij,1 ← wij,1
aj

vij,1 ← vij,1
aj

vijk ← τnn vijk

τ1,ik ← τnn τ1,ik

4.1. EXPERIMENTAL SOFTWARE 95

τ2,ik ← τ2
nn τ2,ik

αm ← cm αm

βm ← cm βm (4.1)

and the corresponding unscaling as

ts,is ←
ts,is
τnn

(x(0)
s,is

)i ←
x

(0)
s,is

)i
ai

+ bi

(x̂s,is)m ← (x̂s,is)m
cm

wij,1 ← aj wij,1

θi,1 ← θi,1 +
N0∑
j=1

bj wij,1

vij,1 ← aj vij,1

vijk ← vijk
τnn

τ1,ik ← τ1,ik

τnn

τ2,ik ← τ2,ik

τ2
nn

αm ← αm
cm

βm ← βm
cm

(4.2)

The treatment of ac scaling runs along rather similar lines, by translating the ac scalings

into their corresponding time domain scalings, and vice versa. The inverse of a frequency

scaling is in fact a time scaling. The scaling of ac frequency points, during preprocessing,

is therefore also undone in the postprocessing by dividing the vijk- and τ1,ik-values of

all neurons by this corresponding time scaling factor τnn, determined and used in the

preprocessing. Again, all τ2,ik-values are divided by the square of this time scaling factor.

The scaling of target transfer matrix elements refers to phasor ratio’s of network target

outputs and network inputs. Multiplying all the wij,1 and vij,1 by a single constant would

not affect the elements of the neural network transfer matrices if all the αm and βm were

divided by that same constant. Therefore, a separate network input and target output

scaling cannot be uniquely determined, but may simply be taken from the dc and transient

training data. Hence, these transfer matrix elements are during pre-processing scaled by

the target scaling factor divided by the input scaling factor, as determined for dc and

transient. For multiple-input-multiple-output networks, this implies the use of a scaling

96 CHAPTER 4. RESULTS

matrix with elements coming from all possible combinations of network inputs and network

outputs.

The scaling of frequency domain data for dc bias conditions x(0)
s,is

can therefore be written

as

(x(0)
s,is

)i ← ai
(
(x(0)

s,is
)i − bi

)
fb,ib ←

fb,ib
τnn(

Ĥb,ib

)
mi
← cm

ai

(
Ĥb,ib

)
mi

(4.3)

and the corresponding unscaling as

(x(0)
s,is

)i ←
x

(0)
s,is

)i
ai

+ bi

fb,ib ← τnn fb,ib(
Ĥb,ib

)
mi
← ai

cm

(
Ĥb,ib

)
mi

(4.4)

This discussion on scaling is certainly not complete, since one can also apply scaling to,

for instance, the error functions, while such a scaling may in principle be different for

each network output item. It would lead too far, however, to go into all the intricacies

and pitfalls of input and output scaling for nonlinear dynamic systems. Many of these

matters are presently still under investigation, because they can have a profound effect on

the learning performance.

4.1.2 Nonlinear Constraints on Dynamic Behaviour

Although the neural modelling techniques form a kind of black-box approach, inclusion

of general a priori knowledge about the field of application in the form of parameter

constraints can increase the performance of optimization techniques in several respects.

It may lead to fewer optimization iterations, and it may reduce the probability of getting

stuck at a local minimum with a poor fit to the target data. On the other hand, constraints

should not be too strict, but rather “encourage” the optimization techniques to find what

we consider “reasonable” network behaviour, by making it more difficult to obtain “exotic”

behaviour.

The neuron timing parameters τ1,ik and τ2,ik should remain non-negative, such that the

neural network outcomes will not, for instance, continue to grow indefinitely with time. If

there are good reasons to assume that a device will not behave as a near-resonant circuit,

the value of the neuron quality factors may be bounded by means of constraints. Without

4.1. EXPERIMENTAL SOFTWARE 97

-5

0

5

sigma1 -5

0

5

sigma2

0

0.25

0.5

0.75

1

tau1

-5

0

5

sigma1 -5

0

5

sigma2

0

0.25

0.5

0.75

1

tau1

Figure 4.1: Parameter function τ1(σ1,ik , σ2,ik) for Qmax = 1 and cd = 1.

-5

0

5

sigma1 -5

0

5

sigma2

0

0.1

0.2

0.3

tau2

-5

0

5

sigma1 -5

0

5

sigma2

0

0.1

0.2

0.3

tau2

Figure 4.2: Parameter function τ2(σ1,ik , σ2,ik) for Qmax = 1 and cd = 1.

98 CHAPTER 4. RESULTS

such constraints, a neural network may try to approximate, i.e., learn, the behaviour cor-

responding to a band-pass filter characteristic by first growing large but narrow resonance

peaks1. This can quickly yield a crude approximation with peaks at the right positions,

but resonant behaviour is qualitatively different from the behaviour of a band-pass filter,

where the height and width of a peak in the frequency transfer curve can be set indepen-

dently by an appropriate choice of parameters. Resonant behaviour corresponds to small

τ1,ik values, but band-pass filter behaviour corresponds to the subsequent dominance, with

growing frequency, of terms involving vijk, τ1,ik and τ2,ik, respectively. This means that a

first quick approximation with resonance peaks must subsequently be “unlearned” to find

a band-pass type of representation, at the expense of additional optimization iterations—if

the neural network is not in the mean time already caught at a local minimum of the error

function.

It is worth noting that the computational burden of calculating τ ’s from σ’s and σ’s from

τ ’s, is generally negligible even for rather complicated transformations. The reason is,

that the actual ac, dc and transient sensitivity calculations can, for the whole training set,

be based on using only the τ ’s instead of the σ’s. The τ ’s and σ’s need to be updated only

once per optimization iteration, and the required sensitivity information w.r.t. the σ’s is

only at that instant calculated via evaluation of the partial derivatives of the parameter

functions τ1(σ1,ik, σ2,ik) and τ2(σ1,ik, σ2,ik).

4.1.2.1 Scheme for τ1,ik, τ2,ik > 0 and bounded τ1,ik

The timing parameter τ2,ik can be expressed in terms of τ1,ik and the quality factor Q

by rewriting Eq. (2.22) as τ2,ik = (τ1,ik Q)2, while a bounded Q may be obtained by

multiplying a default, or user-specified, maximum quality factor Qmax by the logistic

function L(σ1,ik) as in

Q(σ1,ik) = Qmax L(σ1,ik) (4.5)

such that 0 < Q(σ1,ik) < Qmax for all real-valued σ1,ik. When using an initial value

σ1,ik = 0, this would correspond to an initial quality factor Q = 1
2 Qmax .

Another point to be considered, is what kind of behaviour we expect at the frequency

corresponding to the time scaling by τnn. This time scaling should be chosen in such a way,

that the major time constants of the neural network come into play at a scaled frequency

ωs ≈ 1. Also, the network scaling should preferably be such, that a good approximation to

the target data is obtained with many of the scaled parameter values in the neighbourhood

of 1. Furthermore, for these parameter values, and at ωs, the “typical” influence of
1This phenomenon has been observed in experiments with the experimental software implementation.

4.1. EXPERIMENTAL SOFTWARE 99

the parameters on the network behaviour should neither be completely negligible nor

highly dominant. If they are too dominant, we apparently have a large number of other

network parameters that do not play a significant role, which means that, during network

evaluation, much computational effort is wasted on expressions that do not contribute

much to accuracy. Vice versa, if their influence is negligible, computational effort is

wasted on expressions containing these redundant parameters. The degrees of freedom

provided by the network parameters are best exploited, when each network parameter

plays a meaningful or significant role. Even if this ideal situation is never reached, it

still is an important qualitative observation that can help to obtain a reasonably efficient

neural model.

For ω = ωs = 1, the denominator of the neuron transfer function in Eq. (3.35) equals

1 + τ1,ik − τ2,ik . The dominance of the second and third term may, for this special

frequency, be bounded by requiring that τ1,ik + τ2,ik < cd, with cd a positive real

constant, having a default value that is not much larger than 1. Substitution of τ2,ik =

(τ1,ik Q)2, and allowing only positive τ1,ik values, leads to the equivalent requirement

0 < τ1,ik < 2cd / (1 +
√

1 + 4cdQ2). This requirement may be fulfilled by using the

logistic function L(σ2,ik) in the following expression for the τ1 parameter function

τ1(σ1,ik , σ2,ik) = L(σ2,ik)
2cd

1 +
√

1 + 4cd(Q(σ1,ik))2
(4.6)

and τ2,ik is then obtained from the τ2 parameter function

τ2(σ1,ik , σ2,ik) = [τ1(σ1,ik , σ2,ik) Q(σ1,ik)]
2 (4.7)

The shapes of the parameter functions τ1(σ1,ik , σ2,ik) and τ2(σ1,ik , σ2,ik) are illustrated

in Figs. 4.1 and 4.2, using Qmax = 1 and cd = 1.

We deliberately did not make use of the value of ω0 , as defined in (2.21), to construct

relevant constraints. For large values of the quality factor (Q� 1), ω0 would indeed be the

angular frequency at which the denominator of the neuron transfer function in Eq. (3.35)

starts to deviate significantly from 1, for values of τ1,ik and τ2,ik in the neighbourhood of

1, because the complex-valued term with τ1,ik can in that case be neglected. This becomes

immediately apparent if we rewrite the denominator from Eq. (3.35), using Eqs. (2.21) and

(2.22), in the form 1 +  (1/Q)(ω/ω0) − (ω/ω0)2. However, for small values of the quality

factor (Q � 1), the term with τ1,ik in the denominator of Eq. (3.35) clearly becomes

significant at angular frequencies lying far below ω0—namely by a factor on the order of

the quality factor Q.

Near-resonant behaviour is relatively uncommon for semiconductor devices at normal op-

erating frequencies, although with high-frequency discrete devices it can occur due to the

100 CHAPTER 4. RESULTS

packaging. The inductance of bonding wires can, together with parasitic capacitances,

form linear subcircuits with high quality factors. Usually, some a priori knowledge is

available about the device or subcircuit to be modelled, thereby allowing an educated

guess for Qmax. If one prescribes too small a value for Qmax, one will discover this—

apart from a poor fit to the target data—specifically from the large values for σ1 that

arise from the optimization. When this happens, an effective and efficient countermeasure

is to continue the optimization with a larger value of Qmax. The continuation can be

done without disrupting the optimization results obtained thus far, by recalculating the

σ values from the latest τ values, given the new—larger—value of Qmax. For this reason,

the above parameter functions τ1(σ1,ik, σ2,ik) and τ2(σ1,ik, σ2,ik) were also designed to be

explicitly invertible functions for values of τ1,ik and τ2,ik that meet the above constraints

involving Qmax and cd. This means that we can write down explicit expressions for σ1,ik =

σ1(τ1,ik, τ2,ik) and σ2,ik = σ2(τ1,ik, τ2,ik). These expressions are given by

σ1(τ1,ik , τ2,ik) = − ln

(
τ1,ikQmax√

τ2,ik
− 1

)
(4.8)

and

σ2(τ1,ik , τ2,ik) = − ln

(
2cd

τ1,ik (1 +
√

1 + 4cdQ2)
− 1

)
(4.9)

with Q calculated from Q = √τ2,ik/τ1,ik .

4.1.2.2 Alternative scheme for τ1,ik, τ2,ik ≥ 0

In some cases, particularly when modelling filter circuits, it may be difficult to find a

suitable value for cd. If cd is not large enough, then obviously one may have put too

severe restrictions to the behaviour of neurons. However, if it is too large, finding a

correspondingly large negative σ2,ik value may take many learning iterations. Similarly,

using the logistic function to impose constraints may lead to many learning iterations when

the range of time constants to be modelled is large. For reasons like these, the following

simpler alternative scheme can be used instead:

τ1(σ1,ik) = [σ1,ik]2 (4.10)

τ2(σ1,ik , σ2,ik) = [τ1(σ1,ik)Q(σ2,ik)]2 (4.11)

with

[Q(σ2,ik)]2 = [Qmax]2
σ2

2,ik

1 + σ2
2,ik

(4.12)

4.1. EXPERIMENTAL SOFTWARE 101

and σ1,ik and σ2,ik values can be recalculated from proper τ1,ik and τ2,ik values using

σ1(τ1,ik) =
√
τ1,ik (4.13)

σ2(τ1,ik , τ2,ik) =
1√

Q2
maxτ

2
1,ik

τ2,ik
− 1

(4.14)

4.1.3 Software Self-Test Mode

An important aspect in program development is the correctness of the software. In the

software engineering discipline, some people advocate the use of formal techniques for

proving program correctness. However, formal techniques for proving program correctness

have not yet been demonstrated to be applicable to complicated engineering packages, and

it seems unlikely that these techniques will play such a role in the foreseeable future2.

It is hard to prove that a proof of program correctness is itself correct, especially if the proof

is much longer and harder to read than the program one wishes to verify. It is also very

difficult to make sure that the specification of software functionality is correct. One could

have a “correct” program that perfectly meets a nonsensical specification. Essentially, one

could even view the source code of a program as a (very detailed) specification of its desired

functionality, since there is no fundamental distinction between a software specification

and a detailed software design or a computer program. In fact, there is only the practical

convention that by definition a software specification is mapped onto a software design,

and a software design is mapped onto a computer program, while adding detail (also to

be verified) in each mapping: a kind of divide-and-conquer approach.

What one can do, however, is to try several methodologically and/or algorithmically very

distinct routes to the solution of given test problems. To be more concrete: one can in

simple cases derive solutions mathematically, and test whether the software gives the same

solutions in these trial cases.

In addition, and directly applicable to our experimental software, one can check whether

analytically derived expressions for sensitivity give, within an estimated accuracy range,

the same outcomes as numerical (approximations of) derivatives via finite difference ex-

pressions. The latter are far more easy to derive and program, but also far more inefficient
2An exception must be made for purely symbolic processing software, such as language compilers.

In general, however, heuristic assumptions about what is “correct” already enter by selecting numerical
methods that are only guaranteed to be valid with an infinitely dense discretization of the problems at
hand, calculating with an infinite machine precision, while one knows in advance that one will in practice,
for efficiency reasons, want to stay as far as possible away from these limits. In fact, one often deliberately
balances on the edge of “incorrectness” (inaccurate results) to be able to solve problems that would
otherwise be too difficult or costly (time-consuming) to solve.

102 CHAPTER 4. RESULTS

Figure 4.3: Program running in sensitivity self-test mode.

4.1. EXPERIMENTAL SOFTWARE 103

to calculate. During network optimization, one would for efficiency use only the analytical

sensitivity calculations. However, because dc, transient and ac sensitivity form the core

of the neural network learning program, the calculation of both analytical and numerical

derivatives has been implemented as a self-test mode with graphical output, such that one

can verify the correctness of sensitivity calculations for each individual parameter in turn

in a set of neural networks, and for a large number of time points and frequency points.

In Fig. 4.3 a hardcopy of the Apollo/HP425T screen shows the graphical output while

running in the self-test mode. On the left side, in the first column of the graphics ma-

trix, the topologies for three different feedforward neural networks are shown. Associated

transient sensitivity and ac sensitivity curves are shown in the second and third column,

respectively. The neuron for which the sensitivity w.r.t. one particular parameter is be-

ing calculated, is highlighted by a surrounding small rectangle—in Fig. 4.3 the top left

neuron of network NET2. It must be emphasized, that the drawn sensitivity curves show

the “momentary” sensitivity contributions, not the accumulated total sensitivity up to a

given time or frequency point. This means that in the self-test mode the summations in

Eqs. (3.20) and (3.61), and in the corresponding gradients in Eqs. (3.25) and (3.64), are

actually suppressed in order to reduce numerical masking of any potential errors in the

implementation of sensitivity calculations. However, for transient sensitivity, the depen-

dence of sensitivity values (“sensitivity state”) on preceding time points is still taken into

account, because it is very important to also check the correctness of this dependence as

specified in Eq. (3.8).

The curves for analytical and numerical sensitivity completely coincide in Fig. 4.3, indi-

cating that an error in these calculations is unlikely. The program cycles through the

sensitivity curves for all network parameters, so the hardcopy shows only a small fraction

of the output of a self-test run. Because the self-test option has been made an integral

part of the program, correctness can without effort be quickly re-checked at any moment,

e.g., after a change in implementation: one just watches for any non-coinciding curves,

which gives a very good fault coverage.

4.1.4 Graphical Output in Learning Mode

A hardcopy of the Apollo/HP425T screen, presented in Fig. 4.4, shows some typical graph-

ical output as obtained during simultaneous time domain learning in multiple dynamic

neural networks. Typically, one simulates and trains several slightly different neural net-

work topologies in one run, in order to select afterwards the best compromise between

simplicity (computational efficiency) of the generated models and their accuracy w.r.t.

the training data.

104 CHAPTER 4. RESULTS

Figure 4.4: Program running in neural network learning mode.

4.1. EXPERIMENTAL SOFTWARE 105

In the hardcopy of Fig. 4.4, a single graphics window is subdivided to form a 3×4 graphics

matrix showing information about the training of two neural networks.

On the left side, in the first column of the graphics matrix, the topologies for two different

feedforward neural networks are shown. Associated time domain curves are shown in the

second column. In the network plots, any positive network weights wijk are shown by solid

interconnect lines, while dotted lines are used for negative weights3. A small plus or minus

sign within a neuron i in layer k represents the sign of its associated threshold θik. The

network inputs are shown as dummy neurons, indicated by open squares, on the left side

of the topology plots. The number of neurons within each layer is shown at the bottom of

these plots. We will use the notational convention that the feedforward network topology

can be characterized by a sequence of numbers, for the number of neurons in each layer,

going from input (left in the plots) to the output (right). Consequently, NET1 in Fig. 4.4

is a 3-2-3 network: 3 inputs (dummy neurons), 2 neurons in the middle (hidden) layer,

and 3 output neurons.

If there were also frequency domain data in the training set, the second column of the

graphics matrix of Fig. 4.4 would be split into two columns with plots for both time domain

and frequency domain results—in a similar fashion as shown before for the self-test mode

in Fig. 4.3. The target data as a function of time is shown by solid curves, and the

actual network behaviour, in this case obtained using Backward Euler time integration, is

represented by dashed curves. At the bottom of the graphics window, the input waves are

shown. All target curves are automatically and individually scaled to fit the subwindows,

so the range and offset of different target curves may be very different even if they seem to

have the same range on the screen. This helps to visualize the behavioural structure—e.g.,

peaks and valleys—in all of the curves, independent of differences in dynamic range, at

the expense of the visualization of the relative ranges and offsets.

Small error plots in the third column of the graphics matrix (“Learning progress plot”)

show the progress made in reducing the modelling error. If the error has dropped by more

than a factor of a hundred, the vertical scale is automatically enlarged by this factor in

order to show further learning progress. This causes the upward jumps in the plots.

The fourth column of the graphics matrix (“Parameter update plot”) contains informa-

tion on the relative size of all parameter changes in each iteration, together with numerical

values for the three largest absolute changes. The many dimensions in the network param-

eter vector are captured by a logarithmically compressed “smashed mosquito” plot, where

each direction corresponds to a particular parameter, and where larger parameter changes

yield points further away from the central point. The purpose of this kind of information

3On a color screen, suitable colors are used instead of dashed or dotted lines.

106 CHAPTER 4. RESULTS

is to give some insight into what is going on during the optimization of high-dimensional

systems.

The target data were in this case obtained from Pstar simulations of a simple linear

circuit having three linear resistors connecting three of the terminals to an internal node,

and having a single linear capacitor that connects this internal node to ground. The time-

dependent behaviour of this circuit requires non-quasistatic modelling. A frequency sweep,

here in the time domain, was applied to one of the terminal potentials of this circuit, and

the corresponding three independent terminal currents formed the response of the circuit.

The time-dependent current values subsequently formed the target data used to train the

neural networks.

However, the purpose of this time domain learning example is only to give some impression

about the operation of the software, not to show how well this particular behaviour can

be modelled by the neural networks. That will be the subject of subsequent examples in

section 4.2.

The graphical output was mainly added to help with the development, verification and

tuning of the software, and only in the second place to become available to future users.

The software can be used just as well without graphical output, as is often done when

running neural modelling experiments on remote hosts, in the background of other tasks,

or as batch jobs.

4.2 Preliminary Results and Examples

The experimental software has been applied to several test-cases, for which some prelim-

inary results are outlined in this section. Simple examples of automatically generated

models for Pstar, Berkeley SPICE and Cadence Spectre are discussed, together with sim-

ulation results using these simulators. A number of modelling problems illustrate that the

neural modelling techniques can indeed yield good results, although many issues remain

to be resolved. Table 4.1 gives an overview of the test-cases as discussed in the following

sections. In the column with training data, the implicit DC points at time t = 0 for

transient and the single DC point needed to determine offsets for AC are not taken into

account.

4.2.1 Multiple Neural Behavioural Model Generators

It was already stated in the introduction, that output drivers to the neural network soft-

ware can be made for automatically generating neural models in the appropriate syntax for

a set of supported simulators. Such output drivers or model generators could alternatively

4.2. PRELIMINARY RESULTS AND EXAMPLES 107

Section Problem Model Network Training
description type topology data

4.2.2.1 filter linear 1-1 transient
dynamic

4.2.2.2 filter linear 1-1 AC
dynamic

4.2.3 MOSFET nonlinear 2-4-4-2 DC
static

4.2.4 amplifier linear 2-2-2 AC
dynamic

4.2.5 bipolar nonlinear 2-2-2-2 DC, AC
transistor dynamic 2-3-3-2

2-4-4-2
2-8-2

4.2.6 video linear 2-2-2-2-2-2 AC, transient
filter dynamic

Table 4.1: Overview of neural modelling test-cases.

also be called simulator drivers, analogous to the term printer driver for a software module

that translates an internal document representation into appropriate printer codes.

Model generators for Pstar4 and SPICE have been written, the latter mainly as a feasibility

study, given the severe restrictions in the SPICE input language. A big advantage of the

model generator approach lies in the automatically obtained mutual consistency among

models mapped onto (i.e., automatically implemented for) different simulators. In the

manual implementation of physical models, such consistency is rarely achieved, or only at

the expense of a large verification effort.

As an illustration of the ideas, a simple neural modelling example was taken from the

recent literature [3]. In [3], a static 6-neuron 1-5-1 network was used to model the shape

of a single period of a scaled sine function via simulated annealing techniques. The function

0.8 sin(x) was used to generate dc target data. For our own experiment 100 equidistant

points x were used in the range [−π, π]. Using this 1-input 1-output dc training set, it

turned out that with the present gradient-based software just a 3-neuron 1-2-1 network

with use of the F2 nonlinearity sufficed to get a better result than shown in [3]. A total of

500 iterations was allowed, the first 150 iterations using a heuristic optimization technique

(See Appendix A.2), based on step size enlargement or reduction per dimension depending

4In the case of Pstar, the model generator actually creates a Pstar job, which, when used as input for
Pstar, instructs Pstar to store the newly defined models in the Pstar user library. These models can then
be immediately accessed and used from any Pstar job owned by the user. One could say that the model
generator creates a Pstar library generator as an intermediate step, although this may sound confusing to
those who are not familiar with Pstar.

108 CHAPTER 4. RESULTS

on whether a minimum appeared to be crossed in that particular dimension, followed by

350 Polak-Ribiere conjugate gradient iterations. After the 500 iterations, Pstar and SPICE

models were automatically generated.

The Pstar model was then used in a Pstar run to simulate the model terminal current as

a function of the branch voltage in the range [−π, π]. The SPICE model was similarly

used in both Berkeley SPICE3c1 and Cadence Spectre. The results are shown in Fig. 4.5.

The 3-neuron neural network simulation results of Pstar, SPICE3c1 and Spectre all nicely

-4.0
-3.0

-2.0
-1.0

0.0
1.0

2.0
3.0

4.0

(LIN)

-800.0m

-600.0m

-400.0m

-200.0m

0.0

200.0m

400.0m

600.0m

800.0m (LIN)

-4.0m

-2.0m

0.0

2.0m

4.0m

6.0m

8.0m

10.0m

12.0m

(LIN)

VIN1

- y1-axis -

TARGET

PSTAR

SPICE3C1

SPECTRE

- y2-axis -

DPSTAR

Figure 4.5: Neural network mapped onto several circuit simulators.

match the target data curve. The difference between Pstar outcomes and the target data

is shown as a separate curve (“DPSTAR = PSTAR − TARGET”).

Of course, Pstar already has a built-in sine function and many other functions that can

be used in defining controlled sources. However, the approach as outlined above would

just as well apply to device characteristics for which no analytical expression is known, for

instance by using curve traces coming directly from measurements. After all, the neural

network modelling software did not “know” anything about the fact that a sine function

had been used to generate the training data.

4.2. PRELIMINARY RESULTS AND EXAMPLES 109

4.2.2 A Single-Neuron Neural Network Example

In this section, several aspects of time domain and frequency domain learning will be

illustrated, by considering the training of a 1-1 neural network consisting of just a single

neuron.

4.2.2.1 Illustration of Time Domain Learning

In Fig. 2.6, the step response corresponding to the left-hand side of the neuron differential

equation (2.2) was shown, for several values of the quality factor Q. Now we will use the

response as calculated for one particular value of Q, and use this as the target behaviour

in a training set. The modelling software then adapts the parameters of a single-neuron

neural network, until, hopefully, a good match is obtained. From the construction of the

training set, we know in advance that a good match exists, but that does not guarantee

that it will indeed be found through learning.

From a calculated response for τ2,ik = 1 and Q = 4, the following corresponding training

set was created, in accordance with the syntax as specified in Appendix B, and using 101

equidistant time points in the range t ∈ [0, 25] (not all data is shown)

1 network, 2 layers
layer widths 1 1
1 input, 1 output
time= 0.00 input= 0.0 target= 0.0000000000
time= 0.25 input= 1.0 target= 0.0304505805
time= 0.50 input= 1.0 target= 0.1174929918
time= 0.75 input= 1.0 target= 0.2524522832
time= 1.00 input= 1.0 target= 0.4242910433
time= 1.25 input= 1.0 target= 0.6204177826
...
time= 23.75 input= 1.0 target= 1.0063803667
time= 24.00 input= 1.0 target= 0.9937691802
time= 24.25 input= 1.0 target= 0.9822976113
time= 24.50 input= 1.0 target= 0.9725880289
time= 24.75 input= 1.0 target= 0.9651188963
time= 25.00 input= 1.0 target= 0.9602046515

From Eq. (2.22) we find that the choices τ2,ik = 1 and Q = 4 imply τ1,ik = 1
4 .

The neural modelling software was subsequently run for 25 Polak-Ribiere conjugate gra-

dient iterations, with the option F(sik) = sik set, and using trapezoidal time integration.

The v-parameter was kept zero-valued during learning, since time differentiation of the

network input is not needed in this case, but all other parameters were left free for adap-

tation. After the 25 iterations, τ1 had obtained the value 0.237053, and τ2 the value

110 CHAPTER 4. RESULTS

20 40 60 80 100

i_s

5

10

15

20

25

iteration

0

0.5

1

1.5

2

y

20 40 60 80 100

i_s

Figure 4.6: Step response of a single-neuron neural network
as it adapts during subsequent learning iterations.

0.958771, which corresponds to Q = 4.1306 according to Eq. (2.22). These results are

already reasonably close to the exact values from which the training set had been derived.

Learning progress is shown in Fig. 4.6. For each of the 25 conjugate gradient iterations,

the intermediate network response is shown as a function of the is-th discrete time point,

where the notation is (in Fig. 4.6 written as i s) corresponds to the usage in Eq. (3.18).

The step response of the single-neuron neural network after the 25 learning iterations

indeed closely approximates the step response for τ2,ik = 1 and Q = 4 shown in Fig. 2.6.

4.2.2.2 Frequency Domain Learning and Model Generation

In Figs. 3.1 and 3.2, the ac behaviour was shown for a particular choice of parameters in

a 1-1 network. One could ask whether a neural network can indeed learn this behaviour

from a corresponding set of real and imaginary numbers. To test this, a training set

was constructed, containing the complex-valued network transfer target values for a 100

frequency points in the range ω ∈ [107, 1013].

The input file snnn.n for the neural modelling software contained (not all data shown)

1 network, 2 layers
layer widths 1 1
1 input, 1 output
time= 0.0 input= 1.0 target= 1.0
type= -1.0 input= 1.0

4.2. PRELIMINARY RESULTS AND EXAMPLES 111

freq= 1.591549431e06 Re= 1.000019750 Im= 0.007499958125
freq= 1.829895092e06 Re= 1.000026108 Im= 0.008623113820
freq= 2.103934683e06 Re= 1.000034513 Im= 0.009914461878
freq= 2.419013619e06 Re= 1.000045625 Im= 0.011399186090
freq= 2.781277831e06 Re= 1.000060313 Im= 0.013106239530
...
freq= 9.107430992e11 Re= 0.00007329159029 Im= -0.01747501717
freq= 1.047133249e12 Re= 0.00005544257380 Im= -0.01519893527
freq= 1.203948778e12 Re= 0.00004194037316 Im= -0.01321929598
freq= 1.384248530e12 Re= 0.00003172641106 Im= -0.01149749396
freq= 1.591549431e12 Re= 0.00002399989900 Im= -0.00999995000

The frequency points are equidistant on a logarithmic scale. The neural modelling software

was run for 75 Polak-Ribiere conjugate gradient iterations, with the option F(sik) = sik

set, and with a request for Pstar neural model generation after finishing the 75 itera-

tions. The program started with random initial parameters for the neural network. An

internal frequency scaling was (amongst other scalings) automatically applied to arrive

at an equivalent problem and network in order to compress the value range of network

parameters. Without such scaling measures, learning the values of the timing parameters

would be very difficult, since they are many orders of magnitude smaller than most of the

other parameters. In the generation of neural behavioural models, the required unscaling

is automatically applied to return to the original physical representation. Shortly after 50

iterations, the modelling error was already zero, apart from numerical noise due to finite

machine precision.

The automatically generated Pstar neural model description was

MODEL: NeuronType1(IN,OUT,REF) delta, tau1, tau2;
EC1(AUX,REF) V(IN,REF);
L1(AUX,OUT) tau1; C2(OUT,REF) tau2 / tau1 ;
R2(OUT,REF) 1.0 ;

END;

MODEL: snnn0(T0,REF);

/* snnn0 topology: 1 - 1 */

c:Rlarge = 1.0e+15;
c:R1(T0,REF) Rlarge;

c: Neuron instance NET[0].L[1].N[0];
L2 (DDX2,REF) 1.0;
JC2(DDX2,REF)

+8.846325e-10*V(T0,REF);
EC2(IN2,REF)

+8.846325e-01*V(T0,REF)
-2.112626e-03-V(L2);

112 CHAPTER 4. RESULTS

NeuronType1_2(IN2,OUT2,REF)
1.000000e+00, 2.500000e-10, 1.000000e-20;

c:R2(OUT2,REF) Rlarge;
JC3(T0,REF) 2.388140e-03+1.130413e+00*V(OUT2,REF);

END; /* End of Pstar snnn0 model */

The Pstar neural network model name snnn0 is derived from the name of the input file

with target data, supplemented with an integer to denote different network definitions

in case several networks are trained in one run. Clearly, the modelling software had no

problem discovering the correct values τ1 = 2.5 · 10−10s and τ2 = 10−20s2, as can be seen

from the argument list of NeuronType1 2(IN2,OUT2,REF). Due to the fact that we had

a linear problem, and used a linear neural network, there is no unique solution for the

remaining parameters. However, because the modelling error became (virtually) zero, this

shows that the software had found an (almost) exact solution for these parameters as well.

10.0M
100.0M

1.0G
10.0G

100.0G
1.0T

10.0T

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

omega

- y1-axis -

Re(H)

Im(H)

10.0M
100.0M

1.0G
10.0G

100.0G
1.0T

10.0T

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

omega

- y1-axis -

Re(H)

Im(H)

Figure 4.7: Fig. 3.1, 3.2 behaviour as recovered via the neural modelling software,
automatic Pstar model generation, Pstar simulation and CGAP output.

The above Pstar model was used in a Pstar job that “replays” the inputs as given in the

training set5. Fig. 4.7 shows the Pstar simulation results presented by the CGAP plotting

package. This may be compared to the real and imaginary curves shown in Fig. 3.2.
5Such auxiliary Pstar jobs for replaying input data, as specified in the training data, are presently

automatically generated when the user requests Pstar models from the neural modelling software. These
Pstar jobs are very useful for verification and plotting purposes.

4.2. PRELIMINARY RESULTS AND EXAMPLES 113

4.2.3 MOSFET DC Current Modelling

A practical problem in demonstrating the potential of the neural modelling software for

automatic modelling of highly nonlinear multidimensional dynamic systems, is that one

cannot show every aspect in one view. The behaviour of such systems is simply too rich to

be captured by a single plot, and the best we can do is to highlight each aspect in turn, as a

kind of cross-section of a higher-dimensional space of possibilities. The preceding examples

gave some impression about the nonlinear (sine) and the dynamic (non-quasistatic, time

and frequency domain) aspects. Therefore, we will now combine the nonlinear with the

multidimensional aspect, but for clarity only for (part of) the static behaviour, namely for

the dc drain current of an n-channel MOSFET as a function of its terminal voltages.

Fig. 4.8 shows the dc drain current Id of the Philips’ MOST model 901 as a function of

the gate-source voltage Vgs and the gate-drain voltage Vgd, for a realistic set of model pa-

rameters. The gate-bulk voltage Vgb was kept at a fixed 5.0V. MOST model 901 is one of

the most sophisticated physics-based quasistatic MOSFET models for CAD applications,

making it a reasonable exercise to use this model to generate target data for neural mod-

elling6. The 169 drain current values of Fig. 4.8 were obtained from Pstar simulations of a

single-transistor circuit, containing a voltage-driven MOST model 901. The 169 drain cur-

rent values and 169 source current values resulting from the dc simulations subsequently

formed the training set7 for the neural modelling software. A 2-4-4-2 network, as illus-

trated in Fig. 1.2, was used to model the Id(Vgd, Vgs) and Is(Vgd, Vgs) characteristics. The

bulk current was not considered. During learning, the monotonicity option was active, re-

sulting in dc characteristics that are, contrary to MOST model 901 itself, mathematically

guaranteed to be monotonic in Vgd and Vgs. The error function used was the simple square

of the difference between output current and target current—as used in Eq. (3.22). This

implies that no attempt was made to accurately model subthreshold behaviour. When

this is required, another error function can be used to improve subthreshold accuracy—at

the expense of accuracy above threshold. It really depends on the application what kind

6Many physical MOSFET models for circuit simulation still contain a number of undesirable modelling
artefacts like unintended discontinuities or nonmonotonicities, which makes it difficult to decide whether
it makes any sense to try to model their behaviour with monotonic and infinitely smooth neural models,
developed for modelling smooth physical behaviour. Physical MOSFET models are often at best continuous
up to and including the first partial derivatives w.r.t. voltage of the dc currents and the equivalent
terminal charges. Quite often not even the first partial derivatives are continuous, due to the way in which
transitions to different operating regions are handled, such as the drain-source interchange procedure
commonly applied to evaluate the physical model only for positive drain-source voltages Vds, while the
physical model is unfortunately often not designed to be perfectly symmetric in drain and source potentials
for Vds approaching zero.

7MOST model 901 capacitance information was not included, although capacitive behaviour could have
been incorporated by adding a set of bias-dependent low-frequency admittance matrices for frequency
domain optimization of the quasistatic behaviour. Internally, both MOST model 901 and the neural
network models employ charge modelling to guarantee charge conservation.

114 CHAPTER 4. RESULTS

Figure 4.8: MOST model 901 dc drain current Id(Vgd, Vgs).

Figure 4.9: Neural network dc drain current Id(Vgd, Vgs).

4.2. PRELIMINARY RESULTS AND EXAMPLES 115

Figure 4.10: Differences between MOST model 901 and neural network.

of error measure is considered optimal. In an initial trial, 4000 Polak-Ribiere conjugate

gradient iterations were allowed. The program started with random initial parameters

for the neural network, and no user interaction or intervention was needed to arrive at

behavioural models with the following results.

Fig. 4.9 shows the dc drain current according to the neural network, as obtained from Pstar

simulations with the corresponding Pstar behavioural model8. The differences with the

MOST model 901 outcomes are too small to be visible even when the plot is superimposed

with the MOST model 901 plot. Therefore, Fig. 4.10 was created to show the remaining

differences. The largest differences observed between the two models, measuring about

3 × 10−5 A, are less than one percent of the current ranges of Figs. 4.8 and 4.9 (approx.

8The Pstar simulation times for the 169 bias conditions were now about ten times longer using the
neural network behavioural model compared to using the built-in MOST model 901 in Pstar. This may
be due to inefficiencies in the handling of the input language of Pstar, onto which the neural network was
mapped. This is indicated by the fact that the simulation time for the neural model in the neural modelling
program itself was instead about four times shorter than with the MOST model 901 model in Pstar, on the
same HP9000/735 computer. However, as was explained in section 1.1, in device modelling the emphasis is
less on simulation efficiency and more on quickly getting a model that is suitable for accurate simulation.
Only in this particular test-case there already was a good physical model available, which we even used as
the source of data to be modelled. Nevertheless, a more efficient input language handling in Pstar might
lead to a significant gain in simulation speed.

116 CHAPTER 4. RESULTS

4×10−3 A). Furthermore, monotonicity and infinite smoothness are guaranteed properties

of the neural network, while the neural model was trained in 8.3 minutes on an HP9000/735

computer9.

This example concerns the modelling of one particular device. To include scaling effects of

geometry and temperature, one could use a larger training set containing data for a variety

of temperatures and geometries10, with additional neural network inputs for geometry and

temperature. Alternatively, one could manually add a geometry and temperature scaling

model to the neural model for a single device, although one then has to be extremely

cautious about the different geometry scaling of, for instance, dc currents and capacitive

currents as known from physical quasistatic modelling.

High-frequency non-quasistatic behaviour can in principle also be modelled by the neural

networks, while MOST model 901 is restricted to quasistatic behaviour only. Until now,

the need for non-quasistatic device modelling has been much stronger in high-frequency

applications containing bipolar devices. Static neural networks have also been applied to

the modelling of the dc currents of (submicron) MOSFETs at National Semiconductor

Corporation [35]. A recent article on static neural networks for MOSFET modelling can

be found in [43].

After the above initial trial, an additional experiment was performed, in which several

neural networks were trained simultaneously. To give an impression about typical learning

behaviour, Fig. 4.11 shows the decrease of modelling error with iteration count for a small

population consisting of four neural networks, each having a 2-4-4-2 topology. The network

parameters were randomly initialized, and 2000 Polak-Ribiere conjugate gradient iterations

were allowed, using a sum-of-squares error measure—the contribution from Eq. (3.20) with

Eq. (3.22).

Network Error Maximum Percentage
Eq. (3.22) error (A) of range

0 2.4925e-04 3.40653e-05 0.46
1 3.9649e-03 1.17681e-04 1.58
2 3.9226e-03 1.12598e-04 1.51
3 6.9124e-04 5.11562e-05 0.69

Table 4.2: DC modelling results after 2000 iterations.

9Using the 4000 Polak-Ribiere conjugate gradient iterations
10The parameters for the scaling rules of physical models are in practice also obtained by measuring a

number of different devices. With the Philips’ MOST models 7 and 9, this leads to the so-called “maxi-set,”
applicable to one particular manufacturing process.

4.2. PRELIMINARY RESULTS AND EXAMPLES 117

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000 10000

E
rr

or

Iterations

Network 0
Network 1
Network 2
Network 3

Figure 4.11: MOSFET modelling error plotted logarithmically as a function of iter-
ation count, using four independently trained neural networks.

Fig. 4.11 and Table 4.2 demonstrate that one does not need a particularly “lucky” initial

parameter setting to arrive at satisfactory results.

4.2.4 Example of AC Circuit Macromodelling

For the neural modelling software, it does in principle not matter from what kind of sys-

tem the training data was obtained. Data could have been sampled from an individual

transistor, or from an entire (sub)circuit. In the latter case, when developing a model for

(part of) the behaviour of a circuit or subcircuit, we speak of macromodelling, and the

result of that activity is called a macromodel. The basic aim is to replace a very compli-

cated description of a system—such as a circuit—by a much more simple description—a

macromodel—while preserving the main relevant behavioural characteristics, i.e., input-

output relations, of the original system.

Here we will consider a simple amplifier circuit of which the corresponding circuit schematic

is shown in Fig. 4.12. Source and load resistors are required in a Pstar twoport analysis,

and these are therefore indicated by two dashed resistors. Admittance matrices Y of this

118 CHAPTER 4. RESULTS

circuit were obtained from the following Pstar job:

numform: digits = 6;

circuit;
e_1 (4,0) 3.4;
tn_1 (4,1,2) ’bf199’;
tn_2 (3,2,0) ’bf199’;
r_fb (1,3) 900;
r_2 (4,3) 1k;
c_2 (3,0) 5p;
j_1 (2,0) 0.2ml;
c_out (3,5) 10u;
c_in (1,6) 10u;
r_input (6,0) 1k;
r_load (5,0) 1k;

end;

ac;
f = gn(100k,1g,50);
twoport: r_input, r_load;
monitor: yy;

end;

run;

which generates textual output that has the numeric elements in the correct order for

Figure 4.12: Amplifier circuit used in twoport analysis, and neural macromodel.

4.2. PRELIMINARY RESULTS AND EXAMPLES 119

creating a training set according to the syntax as specified in Appendix B. In the above

Pstar circuit definition block, each line contains a component name, separated from an

occurrence indicator by an underscore, and followed by node numbers between parentheses

and a parameter value or the name of a parameter list.

The amplifier circuit contains two npn bipolar transistors, represented by Pstar level 1

models having three internal nodes, and a twoport is defined between input and output

of the circuit, giving a 2× 2 admittance matrix Y . The data resulting from the Pstar ac

analysis were used as the training data for a single 2-2-2 neural network, hence using only

four neurons. Two network inputs and two network outputs are needed to get a 2 × 2

neural network transfer matrix H that can be used to represent the admittance matrix

Y . The nonnumeric strings in the Pstar monitor output are automatically neglected. For

instance, in a Pstar output line like “MONITOR: REAL(Y21) = 65.99785E-03” only the

substring “65.99785E-03” is recognized and processed by the neural modelling software,

making it easy even to manually construct a training set by some cutting and pasting.

A -trace option in the software can be used to check whether the numeric items are

correctly interpreted during input processing. The neurons were all made linear, i.e.,

F(sik) = sik, because bias dependence is not considered in a single Pstar twoport analysis.

Only a regular sum-of-squares error measure—see Eqs. (3.61) and (3.62)—was used in the

optimization. The allowed total number of iterations was 5000. During the first 500

iterations the before-mentioned heuristic optimization technique was used, followed by

4500 Polak-Ribiere conjugate gradient iterations.

The four admittance matrix elements (Y)11, (Y)12, (Y)21 and (Y)22 are shown as a

function of frequency in Figs. 4.13, 4.15, 4.14 and 4.16, respectively. Curves are shown

for the original Pstar simulations of the amplifier circuit, constituting the target data

Y<i><j>CIRCUIT, as well as for the Pstar simulations Y<i><j>NEURAL of the automatically

generated neural network model in Pstar syntax. The curves for the imaginary parts IM(·)
of admittance matrix elements are easily distinguished from those for the real parts RE(·)
by noting that the imaginary parts vanish in the low frequency limit.

Apparently a very good match with the target data was obtained: for (Y)11, (Y)21

and (Y)22, the deviation between the original circuit behaviour and the neural network

behaviour is barely visible. Even (Y)12 was accurately modelled, in spite of the fact that

the sum-of-squares error measure gives relatively little weight to these comparatively small

matrix elements. An overview of the modelling errors is shown in Fig. 4.17, where the

error was defined as the difference between the neural network outcome and the target

value, i.e., Y<i><j>ERROR = Y<i><j>NEURAL - Y<i><j>CIRCUIT.

120 CHAPTER 4. RESULTS

100.0k
1.0M

10.0M
100.0M

1.0G

(LOG)

-5.0m

0.0

5.0m

10.0m

15.0m

20.0m

25.0m

30.0m (LIN)

F

- y1-axis -

RE(Y11CIRCUIT)

IM(Y11CIRCUIT)

RE(Y11NEURAL)

IM(Y11NEURAL)

Figure 4.13: (Y)11 for amplifier circuit and neural macromodel. The circuit and
neural model outcomes virtually coincide. IM(Y11CIRCUIT) and
IM(Y11NEURAL) both approach zero at low frequencies.

100.0k
1.0M

10.0M
100.0M

1.0G

(LOG)

-40.0m

-20.0m

0.0

20.0m

40.0m

60.0m

80.0m (LIN)

F

- y1-axis -

RE(Y21CIRCUIT)

IM(Y21CIRCUIT)

RE(Y21NEURAL)

IM(Y21NEURAL)

Figure 4.14: (Y)21 for amplifier circuit and neural macromodel. The circuit and
neural model outcomes virtually coincide. IM(Y21CIRCUIT) and
IM(Y21NEURAL) both approach zero at low frequencies.

4.2. PRELIMINARY RESULTS AND EXAMPLES 121

100.0k
1.0M

10.0M
100.0M

1.0G

(LOG)

-2.0m

-1.75m

-1.5m

-1.25m

-1.0m

-750.0u

-500.0u

-250.0u

0.0

250.0u (LIN)

F

- y1-axis -

IM(Y12CIRCUIT)

RE(Y12CIRCUIT)

RE(Y12NEURAL)

IM(Y12NEURAL)

Figure 4.15: (Y)12 for amplifier circuit and neural macromodel. IM(Y12CIRCUIT)
and IM(Y12NEURAL) both approach zero at low frequencies.

100.0k
1.0M

10.0M
100.0M

1.0G

(LOG)

-5.0m

0.0

5.0m

10.0m

15.0m

20.0m

25.0m

30.0m

35.0m (LIN)

F

- y1-axis -

RE(Y22CIRCUIT)

IM(Y22CIRCUIT)

RE(Y22NEURAL)

IM(Y22NEURAL)

Figure 4.16: (Y)22 for amplifier circuit and neural macromodel. The circuit and
neural model outcomes virtually coincide. IM(Y22CIRCUIT) and
IM(Y22NEURAL) both approach zero at low frequencies.

122 CHAPTER 4. RESULTS

100.0k
1.0M

10.0M
100.0M

1.0G

-80.0u

40.0u

-30.0u

30.0u

-200.0u

400.0u

-120.0u

40.0u

-80.0u

40.0u

-125.0u

100.0u

-20.0u

25.0u

-30.0u

60.0u

F

RE(Y12ERROR)

IM(Y12ERROR)

RE(Y11ERROR)

IM(Y11ERROR)

RE(Y21ERROR)

IM(Y21ERROR)

RE(Y22ERROR)

IM(Y22ERROR)

Figure 4.17: Overview of macromodelling errors as a function of frequency.

4.2. PRELIMINARY RESULTS AND EXAMPLES 123

4.2.5 Bipolar Transistor AC/DC Modelling

As another example, we will consider the modelling of the highly nonlinear and frequency-

dependent behaviour of a packaged bipolar device. The experimental training values in

the form of dc currents and admittance matrices for a number of bias conditions were

obtained from Pstar simulations of a Philips model of a BFR92A npn device. This model

consists of a nonlinear Gummel-Poon-like bipolar model and additional linear components

to represent the effects of the package. The corresponding circuit is shown in Fig. 4.18.

Teaching a neural network to behave as the BFR92A turned out to require many optimiza-

tion iterations. A number of reasons make the automatic modelling of packaged bipolar

devices difficult:

• The linear components in the package model can lead to band-pass filter type peaks

as well as to true resonance peaks that are “felt” by the modelling software even if

these peaks lie outside the frequency range of the training data. The allowed quality

factors of the neurons must be constrained to ensure that unrealistically narrow

resonance peaks do not arise (temporarily) during learning; otherwise such peaks

must subsequently be “unlearned” at significant computational expense.

• The dc currents are strongly dependent on the base-emitter voltage, and far less

dependent on the collector-emitter voltage (Early effect), while the most relevant

and rather narrow range of base-emitter voltages lies above 0.5V. An origin-shifting

Figure 4.18: Equivalent circuit for packaged bipolar transistor.

124 CHAPTER 4. RESULTS

Topology Max. Ib Error Max. Ic Error
% of range % of range

2-2-2-2 4.67 2.26
2-3-3-2 4.10 2.82
2-4-4-2 1.58 2.23
2-8-2 1.32 2.62

Table 4.3: DC errors of the neural models after 10000 iterations. Current ranges
(largest values) in training data: 306 µA for the base current Ib , and
25.8 mA for the collector current Ic .

scaling is therefore required to ease the learning.

• The dc base currents are normally much smaller than the collector dc currents: that

is what makes such a device useful. However, at high frequencies, the base and

collector currents (both the real and imaginary parts) become much less different in

size, due to the Miller effect. A network scaling based on dc data only may then

be inappropriate, and lead to undesirable changes in the relative contributions of

admittance matrix elements to the error measure.

• The position of extreme values in the admittance matrix elements as a function of

frequency is bias dependent due to nonlinear effects.

This list could be continued, but the conclusion is that automatically modelling the rich

behaviour of a packaged bipolar device is far from trivial.

The (slow) learning observed with several neural network topologies is illustrated in

Fig 4.19, using 10000 Polak-Ribiere conjugate gradient iterations. The DC part of the

training data consisted of all 18 combinations of the base-emitter voltage Vbe = 0, 0.4,

0.7, 0.75, 0.8 and 0.85 V with the collector-emitter voltage Vce = 2, 5 and 10 V. The AC

part consisted of 2×2 admittance matrices for 7 frequencies f = 1MHz, 10MHz, 100MHz,

200MHz, 500MHz, 1GHz and 2GHz, each at a subset of 8 of the above DC bias points:

(Vbe, Vce) = (0.8,2), (0,5), (0.75,5), (0.8,5), (0.85,5), (0.75,10), (0.8,10) and (0.85,10) V.

The largest absolute errors in the terminal currents for the 18 DC points, as a percent-

age of the target current range (for each terminal separately), at the end of the 10000

iterations, are shown in Table 4.3.

The 2-4-4-2 topology (illustrated in Fig. 1.2) here gave the smallest overall errors. Fig. 4.20

shows some Pstar simulation results with the original Philips model and an automatically

generated behavioural model, corresponding to the 2-4-4-2 neural network. The curves

represent the complex-valued collector current with an ac source between base and emitter,

4.2. PRELIMINARY RESULTS AND EXAMPLES 125

0.01

0.1

1

10

100

1 10 100 1000 10000

E
rr

or

Iterations

2-2-2-2 topology
2-3-3-2 topology
2-4-4-2 topology

2-8-2 topology

Figure 4.19: Bipolar transistor modelling error plotted logarithmically as a function
of iteration count.

and for several base-emitter bias conditions. These curves show the bias- and frequency-

dependence of the complex-valued bipolar transadmittance (of which the real part in the

low-frequency limit is the familiar transconductance).

In spite of the slow learning, an important conclusion is that dynamic feedforward neural

networks apparently can represent the behaviour of such a discrete bipolar device. Also,

to avoid misunderstanding, it is important to point out that Fig. 4.20 shows only a small

part (one out of four admittance matrix elements) of the behaviour in the training data:

the learning task for modelling only the curves in Fig. 4.20 would have been much easier,

as has appeared from several other experiments.

4.2.6 Video Circuit AC & Transient Macromodelling

As a final example, we will consider the macromodelling of a video filter designed at

Philips Semiconductors Nijmegen. The filter has two inputs and two outputs for which

we would like to find a macromodel. The dynamic response to only one of the inputs

was known to be relevant for this case. The nearly linear integrated circuit for this filter

126 CHAPTER 4. RESULTS

0.0
250.0M

500.0M
750.0M

1.0G
1.25G

1.5G
1.75G

2.0G

(LIN)

-300.0m

-200.0m

-100.0m

0.0

100.0m

200.0m

300.0m

400.0m

500.0m (LIN)

2 2 2 2 2
2

2 2 2 2
2 2

2 2 2 2
2 2

2 2 2 2
2

2

3 3
3

3

3
33

3
3

3
3

3

3

3
3

3 3
3

3 3
3

3

3
3

4

4

4

4

4 44

4

4
4

4
4

4

4

4 4

4

4

4
4

4

4

4 4

F

- y1-axis -

REAL(BIPOLAR)

IMAG(BIPOLAR)

IMAG(NEURAL)

REAL(NEURAL)

- Subvar -
HCOL: 1.0
VBE: 0.0
VCE: 5.0
2
HCOL: 1.0
VBE: 750.0m
VCE: 5.0
3
HCOL: 1.0
VBE: 800.0m
VCE: 5.0
4
HCOL: 1.0
VBE: 850.0m
VCE: 5.0

Figure 4.20: Neural network model with 2-4-4-2 topology compared to the bipolar
discrete device model.

4.2. PRELIMINARY RESULTS AND EXAMPLES 127

Figure 4.21: Block schematic of the entire video filter circuit.

contains about a hundred bipolar transistors distributed over six blocks, as illustrated

in Fig. 4.21. The rightmost four TAUxxN blocks constitute filter circuits, each of them

having a certain delay determined by internal capacitor values as selected by the designer.

Fig. 4.22 shows the circuit schematic for a single 40ns filter section. The TAUINT block

in the block diagram of Fig. 4.21 performs certain interfacing tasks that are not relevant

to the macromodelling. Similarly, the dc biasing of the whole filter circuit is handled

by the TAUBIAS block, but the functionality of this block need not be covered by the

macromodel. From the circuit schematics in Fig. 4.24 and Fig. 4.25 it is clear that the

possibility to neglect all this peripheral circuitry in macromodelling is likely to give by

itself a significant reduction in the required computational complexity of the resulting

models. Furthermore, it was known that each of the filter blocks behaves approximately

as a second order linear filter. Knowing that a single neuron can exactly represent the

behaviour of a second order linear filter, a reasonable choice for a neural network topology

in the form of a chain of cascaded neurons would involve at least four non-input layers. We

will use an extra layer to accommodate some of the parasitic high-frequency effects, using

a 2-2-2-2-2-2 topology as shown in Fig. 4.23. The neural network will be made linear in

view of the nearly linear filter circuit, thereby again gaining a reduction in computational

complexity. The linearity implies F(sik) = sik for all neurons. Although the video filter

has separate input and output terminals, the modelling will for convenience be done as

if it were a 3-terminal device in the interpretation of Fig. 2.1 of section 2.1.2, in order to

make use of the presently available Pstar model generator11.

The training set for the neural network consisted of a combination of time domain and

frequency domain data. The entire circuit was first simulated with Pstar to obtain this

11If required, this particular electrical interpretation—or assumption—could afterwards easily be changed
by hand through the addition of two (output) terminals and changing the controlled terminal current
sources into corresponding controlled voltage sources for the added output terminal nodes. This does not
have any significance to the neural modelling problem itself, however, because the mapping to an electrical
or physical simulation model is part of the post-processing.

128 CHAPTER 4. RESULTS

Figure 4.22: Schematic of one of the four video filter/delay sections.

{2, 2, 2, 2, 2, 2}{2, 2, 2, 2, 2, 2}

Figure 4.23: The 2-2-2-2-2-2 feedforward neural network used for macromodelling the
video filter circuit.

data. A simulated time domain sweep running from 1MHz to 9.5MHz in 9.5µs was applied

to obtain a time domain response sampled every 5ns, giving 1901 equidistant time points.

In addition, admittance matrices were obtained from small signal AC analyses at 73 fre-

4.2. PRELIMINARY RESULTS AND EXAMPLES 129

Figure 4.24: Schematic of the video filter interfacing circuitry.

quencies running from 110kHz to 100MHz, with the sample frequencies positioned almost

equidistantly on a logarithmic frequency scale. Because only one input was considered

relevant, it was more efficient to reduce the 2 × 2 admittance matrix to a 2 × 1 matrix

rather than including arbitrary (e.g., constant zero) values in the full matrix.

A comparison between the outcomes of the original transistor level simulations and the

Pstar simulation results using the neural macromodel is presented in Figs. 4.26 through

4.30. In Fig. 4.26, VIN1 is the applied time domain sweep, while TARGET0 and TAR-

GET1 represent the actual circuit behaviour as stored in the training set. The corre-

sponding neural model outcomes are I(VIDEO0 1\T0) and I(VIDEO0 1\T1), respectively.

Fig. 4.27 shows an enlargement for the first 1.6µs, Fig. 4.28 shows an enlargement around

7µs. One finds that the linear neural macromodel gives a good approximation of the

transient response of the video filter circuit. Fig. 4.29 and Fig. 4.30 show the small-signal

frequency domain response for the first and second filter output, respectively. The target

values are labeled HR0C0 for H00 and HR1C0 for H10, while currents I(VIDEO0 1\T0)

130 CHAPTER 4. RESULTS

Figure 4.25: Schematic of the video filter biasing circuitry.

and I(VIDEO0 1\T1) here represent the complex-valued neural model transfer through

the use of an ac input source of unity magnitude and zero phase. The curves for the

imaginary parts IMAG(·) are those that approach zero at low frequencies, while, in this

example, the curves for the real parts REAL(·) approach values close to one at low fre-

quencies. From these figures, one observes that also in the frequency domain a good match

exists between the neural model and the video filter circuit.

In the case of macro-modelling, the usefulness of an accurate model is determined by the

gain in simulation efficiency12. In this example, it was found that the time domain sweep

using the neural macromodel ran about 25 times faster than if the original transistor

level circuit description was used, decreasing the original 4 minute simulation time to

about 10 seconds. This is clearly a significant gain if the filter is to be used repeatedly

as a standard building block, and it especially holds if the designer wants to simulate

larger circuits in which this filter is just one of the basic building blocks. The advantage

12Contrary to the usual application in device modelling we here already have a model, albeit in the form
of a complicated transistor-level description.

4.2. PRELIMINARY RESULTS AND EXAMPLES 131

0.0
2.0u

4.0u
6.0u

8.0u
10.0u

-60.0m

-30.0m

0.0

30.0m

60.0m

-60.0m

-30.0m

0.0

30.0m

60.0m

-60.0m

-30.0m

0.0

30.0m

60.0m

T

VIN1

TARGET0

I(VIDEO0_1\T0)

TARGET1

I(VIDEO0_1\T1)

Figure 4.26: Time domain plots of the input and the two outputs of the video filter
circuit and for the neural macromodel.

0.0
400.0n

800.0n
1.2u

1.6u
-60.0m

-40.0m

-20.0m

0.0

20.0m

40.0m

60.0m

T

- y1-axis -

VIN1

TARGET0

TARGET1

I(VIDEO0_1\T0)

I(VIDEO0_1\T1)

Figure 4.27: Enlargement of the first 1.6µs of Fig. 4.26.

132 CHAPTER 4. RESULTS

6.9u
6.95u

7.0u
7.05u

7.1u

-60.0m

-30.0m

0.0

30.0m

60.0m

-60.0m

-30.0m

0.0

30.0m

60.0m

-60.0m

-30.0m

0.0

30.0m

60.0m

T

VIN1

TARGET0

I(VIDEO0_1\T0)

TARGET1

I(VIDEO0_1\T1)

Figure 4.28: Enlargement of a small time interval from Fig. 4.26 around 7µs, with
markers indicating the position of sample points.

100.0k
1.0M

10.0M
100.0M

-1.5

-1.0

-500.0m

0.0

500.0m

1.0

1.5

F

- y1-axis -

REAL(I(VIDEO0_1\T0))

IMAG(I(VIDEO0_1\T0))

REAL(HR0C0)

IMAG(HR0C0)

Figure 4.29: Frequency domain plots of the real and imaginary parts of the transfer
(H)00 for both the video filter circuit and the neural macromodel.

4.2. PRELIMINARY RESULTS AND EXAMPLES 133

100.0k
1.0M

10.0M
100.0M

-1.5

-1.0

-500.0m

0.0

500.0m

1.0

1.5

F

- y1-axis -

REAL(I(VIDEO0_1\T1))

IMAG(I(VIDEO0_1\T1))

REAL(HR1C0)

IMAG(HR1C0)

Figure 4.30: Frequency domain plots of the real and imaginary parts of the transfer
(H)10 for both the video filter circuit and the neural macromodel.

in simulation speed should of course be balanced against the one-time effort of arriving at

a proper macromodel, which may easily take on the order of a few man days and several

hours of CPU time before sufficient confidence about the model has been obtained.

In this case, the 10-neuron model for the video filter was obtained in slightly less than an

hour of learning time on an HP9000/735 computer, using a maximum quality factor con-

straint Qmax = 5 to discourage resonance peaks from occurring during the early learning

phases. The results shown here were obtained through an initial phase using 750 itera-

tions of the heuristic technique first mentioned in section 4.2 and outlined in section A.2,

followed by 250 Polak-Ribiere conjugate gradient iterations13. The decrease of modelling

error with iteration count is shown in Fig. 4.31, using a sum-of-squares error measure—the

sum of the contributions from Eq. (3.20) with Eq. (3.22) and Eq. (3.61) with Eq. (3.62).

The sudden bend after 750 iterations is the result of the transition from one optimization

method to the next.

13It should be remarked, though, that any minor change in the implementation of even a “standard”
optimization algorithm like Polak-Ribiere can significantly affect the required number of iterations, so
one should view these numbers only as rough or qualitative indications of the learning effort involved in
modelling. As a general observation, it has been noticed that the required iteration counts normally stay
within the same order of magnitude, but it is not uncommon to have variations of a factor two or three
due to, for instance, a different random initialization of neural network parameters.

134 CHAPTER 4. RESULTS

0.01

0.1

1

10

100

0 100 200 300 400 500 600 700 800 900 1000

E
rr

or

Iterations

"video_iters"

Figure 4.31: Video filter modelling error plotted logarithmically as a function of it-
eration count.

135

Chapter 5

Conclusions

To quickly develop new CAD models for new devices, as well as to keep up with the growing

need to perform analogue and mixed-signal simulation of very large circuits, new and more

efficient modelling techniques are needed. Physical modelling and table modelling are to a

certain extent complementary, in the sense that table models can be very useful in case the

physical insight associated with physical models is offset by the long development time of

physical models. However, the use of table models has so far been restricted to delay-free

quasistatic modelling, which in practice meant that the main practical application was in

MOSFET modelling.

The fact that electronic circuits can usually be characterized as being complicated nonlin-

ear multidimensional dynamic systems makes it clear that the ultimate general solution

in modelling will not easily be uncovered—if it ever will. Therefore, the best one can do

is try and devise some of the missing links in the repertoire of modelling techniques, thus

creating new combinations of model and modelling properties to deal with certain classes

of relevant problems.

5.1 Summary

In the context of modelling for circuit simulation, it has been shown how ideas derived

from, and extending, neural network theory can lead to practical applications. For that

purpose, new feedforward neural network definitions have been introduced, in which the

behaviour of individual neurons is characterized by a suitably designed differential equa-

tion. This differential equation includes a nonlinear function, for which appropriate choices

had to be made to allow for the accurate and efficient representation of the typical static

nonlinear response of semiconductor devices and circuits. The familiar logistic function

lacks the common transition between highly nonlinear and weakly nonlinear behaviour.

136 CHAPTER 5. CONCLUSIONS

Furthermore, desirable mathematical properties like continuity, monotonicity, and stabil-

ity played an important role in the many considerations that finally led to the set of neural

network definitions as presented in this thesis. It has been shown that any quasistatic be-

haviour can up to arbitrary precision be represented by these neural networks, in case there

is only one dc solution. In addition, any linear dynamic behaviour of lumped systems can

be covered exactly. Several relevant examples of nonlinear dynamic behaviour have also

been demonstrated to fit the mathematical structure of the neural networks, although not

all kinds of nonlinear dynamic behaviour are considered representable at present.

The standard backpropagation theory for static nonlinear multidimensional behaviour in

feedforward neural networks has been extended to include the learning of dynamic re-

sponse in both time domain and frequency domain. An experimental software implemen-

tation has already yielded a number of encouraging preliminary results. Furthermore, the

neural modelling software can, after the learning phase, automatically generate analogue

behavioural macromodels and equivalent subcircuits for use with circuit simulators like

Pstar, Berkeley SPICE and Cadence Spectre. The video filter example in section 4.2.6 has

demonstrated that the new techniques can lead to more than an order of magnitude re-

duction in (transient) simulation time, by going from a transistor-level circuit description

to a macro-model for use with the same circuit simulator.

All this does certainly not imply that one can now easily and quickly solve any modelling

problem by just throwing in some measurement or simulation data. Some behaviour is

beyond the representational bounds of our present feedforward neural networks, as has

been addressed in section 2.6. It is not yet entirely clear in which cases, or to what extent,

feedback in dynamic neural networks will be required in practice for device and subcircuit

modelling. It has been shown, however, that the introduction of external feedback to our

dynamic neural networks would allow for the representation, up to arbitrary accuracy, of

a very general class of nonlinear multidimensional implicit differential equations, covering

any state equations of the form f (x, ẋ, t) = 0 as used to express the general time evolution

of electronic circuits. It even makes these neural networks “universal approximators” for

arbitrary continuous nonlinear multidimensional dynamic behaviour. This will then also

include, for instance, multiple dc solutions (for modelling hysteresis and latch-up) and

chaotic behaviour.

Still, it seems fair to say that many issues in nonlinear multidimensional dynamic modelling

are only beginning to be understood, and more obstacles are likely to emerge as experience

accumulates. Slow learning can in some cases be a big problem, causing long learning

times in finding a (local) minimum1. Since we are typically dealing with high-dimensional

1The possibility of implementation errors in the complicated sensitivity calculations has been largely
eliminated by the software self-test option, thereby making errors an unlikely reason for slow learning.

5.2. RECOMMENDATIONS FOR FURTHER RESEARCH 137

systems, having on the order of tens or hundreds of parameters (= dimensions), gaining

even a qualitative understanding of what is going on during learning can be daunting.

And yet this is absolutely necessary to know and decide what fundamental changes are

required to further improve the optimization schemes.

In spite of the above reasons for caution, the general direction in automatic modelling as

proposed in this thesis seems to have significant potential. However, it must at the same

time be emphasized that there may still be a long way to go from encouraging preliminary

results to practically useful results with most of the real-life analogue applications.

5.2 Recommendations for Further Research

A practical stumbling block for neural network applications is still formed by the often

long learning times for neural networks, in spite of the use of fairly powerful optimization

techniques like variations of the classic conjugate-gradient optimization technique, the use

of several scaling techniques and the application of suitable constraints on the dynamic

behaviour. This often appears to be a bigger problem than ending up with a relatively

poor local minimum. Consequently, a deeper insight into the origins of slow optimization

convergence would be most valuable. This insight may be gained from a further thorough

analysis of small problems, even academic “toy” problems. The curse of dimensional-

ity is here that our human ability to visualize what is going on fails beyond just a few

dimensions. Slow learning is a complaint regularly found in the literature of neural net-

work applications, so it seems not just specific to our new extensions for dynamic neural

networks.

A number of statistical measures to enhance confidence in the quality of models have not

been discussed in this thesis. In particular in cases with few data points as compared to the

number of model parameters, cross-validation should be applied to reduce the danger of

overfitting. However, more research is needed to find better ways to specify what a near-

minimum but still “representative” training set for a given nonlinear dynamic system

should be. At present, this specification is often rather ad hoc, based on a mixture of

intuition, common sense and a priori knowledge, having only cross-validation as a way to

afterwards check, to some unknown extent, the validity of the choices made2. Various forms

of residue analysis and cross-correlation may also be useful in the analysis of nonlinear

dynamic systems and models.

Related to the limitations of an optimization approach to learning is the need for more

2Or rather, cross-validation can only show that the training set is insufficient: it can invalidate the
training set, not (really) validate it.

138 CHAPTER 5. CONCLUSIONS

“constructive” algorithms for mapping a target behaviour onto neural networks by using a

priori knowledge or assumptions. For combinatorial logic in the sp-form the selection of a

topology and a parameter set of an equivalent feedforward neural network can be done in

a learning-free and efficient manner—the details of which have not been included in this

thesis. However, for the more relevant general classes of analogue behaviour, virtually no

fast schemes are available that go beyond simple linear regression. On the other hand,

even if such schemes cannot by themselves capture the full richness of analogue behaviour,

they may still serve a useful role in a pre-processing phase to quickly get a rough first

approximation of the target behaviour. In other words, a more sophisticated pre-processing

of the target data may yield a much better starting point for learning by optimization,

thereby also increasing the probability of finding a good approximation of the data during

subsequent learning. Pole-zero analysis, in combination with the neural network pole-zero

mapping as outlined in section 2.4.2, could play an important role by first finding a linear

approximation to dynamical system behaviour.

Another important item that deserves more attention in the future is the issue of dynamic

neural networks with feedback. The significant theoretical advantage of having a “uni-

versal approximator” for dynamic systems will have to weighed against the disadvantages

of giving up on explicit expressions for behaviour and on guarantees for uniqueness of

behaviour, stability and static monotonicity. In cases where feedback is not needed, it

clearly remains advantageous to make use of the techniques as worked out in detail in this

thesis, because it offers much greater control over the various kinds of behaviour that one

wants or allows a dynamic neural network to learn. Seen from this viewpoint, it can be

stated that the approach as presented in this thesis offers the advantage that one can in

relatively small steps trade off relevant mathematical guarantees against representational

power.

139

Appendix A

Gradient Based Optimization
Methods

In this appendix, a few popular gradient based optimization methods are outlined. In

addition, a simple heuristic technique is described, which is by default used in the experi-

mental software implementation to locate a feasible region in parameter space for further

optimization by the one of the other optimization methods.

A.1 Alternatives for Steepest Descent

A practical introduction to the methods described in this section can be found in [17], as

well as in many other books, so we will only add a few notes.

The simplest gradient-based optimization scheme is the steepest descent method. In the

present software implementation more efficient methods are provided, among which the

Fletcher-Reeves and Polak-Ribiere conjugate gradient optimization methods [16]. Its de-

tailed discussion, especially w.r.t. 1-dimensional search, would lead too far beyond the

presentation of basic modelling principles, and would in fact require a rather extensive

introduction to general gradient-based optimization theory. However, a few remarks on

the algorithmic part may be useful to give an idea about the structure and (lack of) com-

plexity of the method. Basically, conjugate gradient defines subsequent search directions

s by

s(k+1) = −g(k+1) + β(k)s(k) (A.1)

where the superscript indicates the iteration count. Here g is the gradient of an error or

cost function E which has to be minimized by choosing suitable parameters p; g = ∇E,

or in terms of notations that we used before, g =
(
∂E
∂p

)T
. If β(k) = 0 ∀k, this scheme

140 APPENDIX A. GRADIENT BASED OPTIMIZATION METHODS

corresponds to steepest descent with learning rate η = 1 and momentum µ = 0, see

Eq. (3.24). However, with conjugate gradient, generally only β(0) = 0 and with the

Fletcher-Reeves scheme, for k = 1, 2, . . .,

β(k) =
g(k+1)Tg(k+1)

g(k)Tg(k)
(A.2)

while the Polak-Ribiere scheme involves

β(k) =
(g(k+1) − g(k))Tg(k+1)

g(k)Tg(k)
(A.3)

For quadratic functions E these two schemes for β(k) can be shown to be equivalent, which

implies that the schemes will for any nonlinear function E behave similarly near a smooth

minimum, due to the nearly quadratic shape of the local Taylor expansion. New parameter

vectors p are obtained by searching for a minimum of E in the s direction by calculating

the value of the scalar parameter α which minimizes E(p(k) + α s(k)). The new point in

parameter space thus obtained becomes the starting point p(k+1) for the next iteration,

i.e., the next 1-dimensional search. The details of 1-dimensional search are omitted here,

but it typically involves estimating the position of the minimum of E (only in the search

direction!) through interpolation of subsequent points in each 1-dimensional search by a

parabola or a cubic polynomial, of which the minima can be found analytically. The slope

along the search direction is given by dE
dα = sTg. Special measures have to be taken to

ensure that E will never increase with subsequent iterations.

The background of the conjugate gradient method lies in a Gram-Schmidt orthogonaliza-

tion procedure, which simplifies to the Fletcher-Reeves scheme for quadratic functions.

For quadratic functions, the optimization is guaranteed to reach the minimum within a

finite number of exact 1-dimensional searches: at most n, where n is the number of pa-

rameters in E. For more general forms of E, no such guarantees can be given, and a

significant amount of heuristic knowledge is needed to obtain an implementation that is

numerically robust and that has good convergence properties. Unfortunately, this is still

a bit of an art, if not alchemy.

Finally, it should be noted that still more powerful optimization methods are known.

Among them, the so-called BFGS quasi-Newton method has become rather popular.

Slightly less popular is the DFP quasi-Newton method. These quasi-Newton methods

build up an approximation of the inverse Hessian of the error function in successive iter-

ations, using only gradient information. In practice, these methods typically need some

two or three times fewer iterations than the conjugate gradient methods, at the expense of

handling an approximation of the inverse Hessian [16]. Due to the matrix multiplications

A.2. HEURISTIC OPTIMIZATION METHOD 141

involved in this scheme, the cost of creating the approximation grows quadratically with

the number of parameters to be determined. This can become prohibitive for large neural

networks. On the other hand, as long as the CPU-time for evaluating the error func-

tion and its gradient is the dominant factor, these methods tend to provide a significant

saving (again a factor two or three) in overall CPU-time. For relatively small problems

to be characterized in the least-squares sense, the Levenberg-Marquardt method can be

attractive. This method builds an approximation of the Hessian in a single iteration,

again using only gradient information. However, the overhead of this method grows even

cubically with the number of model parameters, due to the need to solve a corresponding

set of linear equations for each iteration. All in all, one can say that while these more ad-

vanced optimization methods certainly provide added value, they rarely provide an order

of magnitude (or more) reduction in overall CPU-time. This general observation has been

confirmed by the experience of the author with many experiments not described in this

thesis.

A.2 Heuristic Optimization Method

It was found that in many cases the methods of the preceding section failed to quickly

converge to a reasonable fit to the target data set. In itself this is not at all surprising,

since these methods were designed to work well when close to a quadratic minimum,

but nothing is guaranteed about their performance far away from a minimum. However,

it came somewhat as a surprise that under these circumstances a very simple heuristic

method often turned out to be more successful at quickly converging to a reasonable

fit—although it converges far more slowly close to a minimum.

This method basically involves the following steps:

• Initialize the parameter vector with random values.

• Initialize a corresponding vector of small parameter steps.

• Evaluate the cost function and its partial derivatives for both the present parameter

vector and the new vector with the parameter steps added.

• For all vector elements, do the following:

If the sign of the partial derivative corresponding to a particular parameter in the

new vector is opposite to the sign of the associated present parameter step, then

enlarge the step size for this parameter using a multiplication factor larger than one,

since the cost function decreases in this direction. Otherwise, reduce the step size

using a factor between zero and one, and reverse the sign of this parameter step.

142 APPENDIX A. GRADIENT BASED OPTIMIZATION METHODS

• Update the present parameter vector by replacing it with the above-mentioned new

vector, provided the cost function did not increase (too much) with the new vector.

• Repeat the former three steps for a certain number of iterations.

This is essentially a one-dimensional bisection-like search scheme which has been rather

boldly extended for use in multiple dimensions, as if there were no interaction at all

among the various dimensions w.r.t. the position of the minima of the cost function.

Some additional precautions are needed to avoid (strong) divergence, since convergence is

not guaranteed. One may, for example, reduce all parameter steps using a factor close to

zero if the cost function would increase (too much). When the parameter steps have the

opposite sign of the gradient, the step size reduction ensures that eventually a sufficiently

small step in this (generally not steepest) descent direction will lead to a decrease of the

cost function, as long as a minimum has not been reached.

After using this method for a certain number of iterations, it is advisable to switch to one

of the methods of the preceding section. At present, this is still done manually, but one

could conceive additional heuristics for doing this automatically.

143

Appendix B

Input Format for Training Data

In the following sections, a preliminary specification is given of the input file format used for

neural modelling. Throughout the input file, delimiters will be used to separate numerical

items, and comments may be freely used for the sake of readability and for documentation

purposes:

DELIMITERS

At least one space or newline must separate subsequent data items (numbers).

COMMENTS

Comments are allowed at any position adjacent to a delimiter. Comments within numbers

are not allowed. The character pair ”/*” (without the quotes) starts a comment, while

”*/” ends it. Comments may not be nested, and do not themselves act as delimiters. This

is similar, but not identical, to the use in the Pstar input language and the C programming

language. Furthermore, the ”/* ... */” construction may be omitted if the comment

does not contain delimited numbers.

Example:

Any non-numeric comment, or also a
non-delimited number, as in V2001

/* Any number of comment lines, which
* may contain numbers, such as 1.234
*/

B.1 File Header

The input file begins—neglecting any comments—with the integer number of neural net-

works that will be simultaneously trained. Subsequently, for each of these neural networks

the preferred topology is specified. This is done by giving, for each network, the total

144 APPENDIX B. INPUT FORMAT FOR TRAINING DATA

integer number of layers1 K + 1, followed by a list of integer numbers N0 ... NK for the

width of each layer. The number of network inputs N0 must be equal for all networks,

and the same holds for the number of network outputs NK .

Example:

2 /* 2 neural networks: */
3 3 2 3 /* 1st network has 3 layers in a 3-2-3 topology */
4 3 4 4 3 /* 2nd network has 4 layers in a 3-4-4-3 topology */

These neural network specifications are followed by data about the device or subcircuit

that is to be modelled. First the number of controlling (independent) input variables of a

device or subcircuit is specified, given by an integer which should—for consistency—equal

the number of inputs N0 of the neural networks. It is followed by the integer number of

(independent) output variables, which should equal the NK of the neural networks.

Example:

input variables # output variables
3 3

After stating the number of input variables and output variables, a collection of data

blocks is specified, in an arbitrary order. Each data block can contain either dc data and

(optionally) transient data, or ac data. The format of these data blocks is specified in

the sections B.2 and B.3. However, the use of neural networks for modelling electrical

behaviour leads to additional aspects concerning the interpretation of inputs and outputs

in terms of electrical variables and parameters, which is the subject of the next section.

B.1.1 Optional Pstar Model Generation

Very often, the input variables will represent a set of independent terminal voltages, like

the v discussed in the context of Eq. (3.19), and the output variables will be a set of

corresponding independent (target) terminal currents î. In the optional automatic gen-

eration of models for analogue circuit simulators, it is assumed that we are dealing with

such voltage-controlled models for the terminal currents. In that case, we can interpret

the above 3-input, 3-output examples as referring to the modelling of a 4-terminal device

or subcircuit with 3 independent terminal voltages and 3 independent terminal currents.

See also section 2.1.2. Proceeding with this interpretation in terms of electrical variables,

we will now describe how a neural network having more inputs than outputs will be trans-

lated during the automatic generation of Pstar behavioural models. It is not allowed to
1Here we include the input layer in counting layers, such that a network with K + 1 layers has K − 1

hidden layers, in accordance with the conventions discussed earlier in this thesis. The input layer is layer
k = 0, and the output layer is layer k = K.

B.2. DC AND TRANSIENT DATA BLOCK 145

have fewer inputs than outputs if Pstar models are requested from the neural modelling

software.

If the number of inputs N0 is larger than or equal to the number of outputs NK , then the

first NK (!) inputs will be used to represent the voltage variables in v. In a Pstar-like no-

tation, we may write the elements of this voltage vector as a list of voltages V(T0,REF) ...

V(T< NK − 1 >,REF). Just as in Fig. 2.1 in section 2.1.2, the REF denotes any reference

terminal preferred by the user, so V(T<i>,REF) is the voltage between terminal (node)

T<i> and terminal REF. The device or subcircuit actually has NK +1 terminals, because

of the (dependent) reference terminal, which always has a current that is the negative

sum of the other terminal currents, due to charge and current conservation. The NK

outputs of the neural networks will be used to represent the current variables in î, of

which the elements can be written in a Pstar-like notation as terminal current variables

I(T0) ... I(T< NK − 1 >). However, any remaining N0 −NK inputs are supposed to be

time-independent parameters PAR0 ... PAR< N0 −NK − 1 >, which will be included as

such in the argument lists of automatically generated Pstar models.

To clarify this with an example: N0 = 5 and NK = 3 would lead to automatically generated

Pstar models having the form

MODEL: NeuralNet(T0,T1,T2,REF) PAR0, PAR1;
...

END;

with 3 independent input voltages V(T0,REF), V(T1,REF), V(T2,REF), 3 independent

terminal currents I(T0), I(T1), I(T2), and 2 model parameters PAR0 and PAR1.

B.2 DC and Transient Data Block

The dc data block is represented as a special case of a transient data block, by giving only

a single time point 0.0 (which may also be interpreted as a data block type indicator),

corresponding to ts,is=1 = 0 in Eq. (3.18), followed by input values that are the elements

of x(0)
s,is

, and by target output values that are the elements of x̂s,is .

In modelling electrical behaviour in the way that was discussed in section B.1.1, the x(0)
s,is

of Eq. (3.18) will become the voltage vector v of Eq. (3.19), of which the elements will be

the terminal voltages V(T0,REF) ... V(T< NK − 1 >,REF), while the xs,is of Eq. (3.18)

will become the current vector îs,is of Eq. (3.19), of which the elements will be the terminal

currents I(T0) ... I(T< NK − 1 >).

146 APPENDIX B. INPUT FORMAT FOR TRAINING DATA

Example:

0.0 /* single time point */
3.0 4.0 5.0 /* bias voltages */
5.0e-4 -5.0e-4 0.0 /* terminal currents */

However, it should be emphasized that an interpretation in terms of physical quantities like

voltages and currents is only required for the optional automatic generation of behavioural

models for analogue circuit simulators. It does not play any role in the training of the

underlying neural networks.

Extending the dc case, a transient data block is represented by giving multiple time points

ts,is , always starting with the value 0.0, and in increasing time order. Time points need

not be equidistant. Each time point is followed by the elements of the corresponding x(0)
s,is

and x̂s,is .

In the electrical interpretation, this amounts to the specification of voltages and currents

as a function of time.

Example:

time voltages currents
0.0 3.0 4.0 5.0 5.0e-4 -5.0e-4 0.0
1.0e-9 3.5 4.0 5.0 4.0e-4 -4.1e-4 0.0
2.5e-9 4.0 4.0 5.0 3.0e-4 -3.3e-4 0.0
...

B.3 AC Data Block

The small-signal ac data block is distinguished from a dc or transient data block by

starting with a data block type indicator value -1.0. This number is followed by the dc

bias represented by the elements of x(0)
b as in Eq. (3.59).

In the electrical interpretation, the elements of x(0)
b are the dc bias voltages V(T0,REF) ...

V(T< NK − 1 >,REF).

After specifying the dc bias, the frequency values fb,ib are given, each of them followed by

the real and imaginary values of all the elements of an NK × NK target transfer matrix

Ĥb,ib . The required order of matrix elements is the normal reading order, i.e., from left to

right, one row after the other2.

In the electrical interpretation, the transfer matrix contains the real and imaginary parts
2This gives

Re((Ĥb,ib)0,0) Im((Ĥb,ib)0,0) ... Re((Ĥb,ib)0,NK−1) Im((Ĥb,ib)0,NK−1) Re((Ĥb,ib)1,0) Im((Ĥb,ib)1,0) ...

Re((Ĥb,ib)1,NK−1) Im((Ĥb,ib)1,NK−1) Re((Ĥb,ib)NK−1,NK−1) Im((Ĥb,ib)NK−1,NK−1).

B.3. AC DATA BLOCK 147

of Y-parameters3. Ĥb,ib is then equivalent to the so-called admittance matrix Y of the

device or subcircuit that one wants to model. The frequency fb,ib and the admittance

matrix Y have the same meaning and element ordering as in the Pstar specification of a

multiport YNPORT, under the assumption that a common reference terminal REF had

been selected for the set of ports [13, 14]:

f1 y11r y11i y12r y12i ... ymmr ymmi
f2 y11r y11i y12r y12i ... ymmr ymmi
...
fn y11r y11i y12r y12i ... ymmr ymmi

where the r denotes a real value, and the i an imaginary value. The admittance matrix

Y has size NK × NK ; NK is here denoted by m. The ykl≡y<k><l> = (Y)kl can be

interpreted as the complex-valued ac current into terminal T<k> of a linear(ized) device

of subcircuit, resulting from an ac voltage source of amplitude 1 and phase 0 between

terminal T<l> and terminal REF.

Frequency values may be arbitrarily selected. A zero frequency is also allowed (which can

be used for modelling dc conductances). The matrix element order corresponds to the

normal reading order, i.e., from left to right, one row after the other:

read in the order:
/ (y11r,y11i) ... (y1mr,y1mi) \ 1 2 ... m

H = Y = | (y21r,y21i) ... (y2mr,y2mi) | m+1 m+2 ... 2m
| |
\ (ym1r,ym1i) ... (ymmr,ymmi) / (m-1)m+1 (m-1)m+2 ... m*m

Contrary to Pstar, the application is here not restricted to linear multiports, but includes

nonlinear multiports, which is why the dc bias had to be specified as well.

Example:

type dc bias voltages
-1.0 3.0 4.0 5.0
frequency yk1r yk1i yk2r yk2i yk3r yk3i
1.0e9 1.3e-3 1.1e-3 0.3e-3 0.8e-3 0.3e-3 3.1e-3 /* k=1 */

1.3e-3 1.1e-3 0.3e-3 0.8e-3 0.3e-3 3.1e-3 /* k=2 */
1.3e-3 1.1e-3 0.3e-3 0.8e-3 0.3e-3 3.1e-3 /* k=3 */

2.3e9 2.1e-3 1.0e-3 0.7e-3 1.5e-3 0.2e-3 2.0e-3 /* k=1 */
1.0e-3 0.1e-3 0.8e-3 0.2e-3 0.6e-3 3.1e-3 /* k=2 */
1.1e-3 0.1e-3 0.5e-3 0.7e-3 0.9e-3 1.1e-3 /* k=3 */

...

Optional alternative ac data block specifications:

3S-parameter input is not (yet) provided: only Y-parameters can presently be used.

148 APPENDIX B. INPUT FORMAT FOR TRAINING DATA

Alternatively, ac data blocks may also be given by starting with a data block type indicator

value -2.0 instead of -1.0. The only difference is that pairs of numbers for the complex-

valued elements in Y are interpreted as (amplitude, phase) instead of (real part, imaginary

part). The amplitude given must be the absolute (positive) amplitude (not a value in

decibel). The phase must be given in degrees. If a data block type indicator value -3.0

is used, the (amplitude, phase) form with absolute amplitude is assumed during input

processing, with the phase expressed in radians.

B.4 Example of Combination of Data Blocks

Taking the above example parts together, one obtains, for an arbitrary order of data
blocks:

neural network definitions
2
3 3 2 3
4 3 4 4 3

inputs and outputs
3 3

ac block
-1.0 3.0 4.0 5.0
1.0e9 1.3e-3 1.1e-3 0.3e-3 0.8e-3 0.3e-3 3.1e-3

1.3e-3 1.1e-3 0.3e-3 0.8e-3 0.3e-3 3.1e-3
1.3e-3 1.1e-3 0.3e-3 0.8e-3 0.3e-3 3.1e-3

2.3e9 2.1e-3 1.0e-3 0.7e-3 1.5e-3 0.2e-3 2.0e-3
1.0e-3 0.1e-3 0.8e-3 0.2e-3 0.6e-3 3.1e-3
1.1e-3 0.1e-3 0.5e-3 0.7e-3 0.9e-3 1.1e-3

transient block
0.0 3.0 4.0 5.0 5.0e-4 -5.0e-4 0.0
1.0e-9 3.5 4.0 5.0 4.0e-4 -4.1e-4 0.0
2.5e-9 4.0 4.0 5.0 3.0e-4 -3.3e-4 0.0

dc block
0.0 3.0 4.0 5.0 5.0e-4 -5.0e-4 0.0

The present experimental software implementation can read an input file containing the

text of this example.

Only numbers are required in the input file, since any other (textual) information is

automatically discarded as comment. In spite of the fact that no keywords are used, it is

still easy to locate any errors due to an accidental misalignment of data as a consequence of

some missing or superfluous numbers. For this purpose, a -trace software option has been

implemented, which shows what the neural modelling program thinks that each number

represents.

149

Appendix C

Examples of Generated Models

This appendix includes neural network models that were automatically generated by the

behavioural model generators, in order to illustrate how the networks can be mapped onto

several different representations for further use. The example concerns a simple network

with one hidden layer, three network inputs, three network outputs, and two neurons in

the hidden layer. The total number of neurons is therefore five: two in the hidden layer

and three in the output layer. These five neurons together involve 50 network parameters.

The neuron nonlinearity is in all cases the F2 as defined in Eq. (2.16).

C.1 Pstar Example

/***
* Non-quasistatic Pstar models for 1 networks, as *
* written by automatic behavioural model generator. *
***/

MODEL: NeuronType1(IN,OUT,REF) delta, tau1, tau2;
delta2 = delta * delta;
EC1(AUX,REF) ln((exp(delta2*(V(IN,REF)+1)/2) + exp(-delta2*(V(IN,REF)+1)/2))

/ (exp(delta2*(V(IN,REF)-1)/2) + exp(-delta2*(V(IN,REF)-1)/2))
) / delta2;

L1(AUX,OUT) tau1; C2(OUT,REF) tau2 / tau1 ;
R2(OUT,REF) 1.0 ;

END;

MODEL: Thesis0(T0,T1,T2,REF);

/* Thesis0 topology: 3 - 2 - 3 */

c:Rlarge = 1.0e+15;
c: Neuron instance NET[0].L[1].N[0];
L4 (DDX4,REF) 1.0;
JC4(DDX4,REF)

150 APPENDIX C. EXAMPLES OF GENERATED MODELS

+1.790512e-09*V(T0,REF)-1.258335e-10*V(T1,REF)+2.022312e-09*V(T2,REF);
EC4(IN4,REF)

-6.708517e-02*V(T0,REF)-4.271246e-01*V(T1,REF)-7.549380e-01*V(T2,REF)
+4.958681e-01-V(L4);

NeuronType1_4(IN4,OUT4,REF)
1.369986e+00, 6.357759e-10, 6.905401e-21;

c:R4(OUT4,REF) Rlarge;

c: Neuron instance NET[0].L[1].N[1];
L5 (DDX5,REF) 1.0;
JC5(DDX5,REF)

+1.933749e-09*V(T0,REF)+1.884210e-10*V(T1,REF)+2.656819e-09*V(T2,REF);
EC5(IN5,REF)

+1.895829e-01*V(T0,REF)+3.461638e-01*V(T1,REF)+1.246243e+00*V(T2,REF)
-2.266006e-01-V(L5);

NeuronType1_5(IN5,OUT5,REF)
1.458502e+00, 9.067704e-10, 5.114471e-20;

c:R5(OUT5,REF) Rlarge;

c: Neuron instance NET[0].L[2].N[0];
L6 (DDX6,REF) 1.0;
JC6(DDX6,REF)

+2.202777e-10*V(OUT4,REF)+2.865773e-10*V(OUT5,REF);
EC6(IN6,REF)

+1.425344e+00*V(OUT4,REF)-1.075981e+00*V(OUT5,REF)
+3.051705e-02-V(L6);

NeuronType1_6(IN6,OUT6,REF)
1.849287e+00, 7.253345e-10, 3.326457e-20;

c:R6(OUT6,REF) Rlarge;
JC9(T0,REF) -1.249222e-01-2.684799e-01*V(OUT6,REF);

c: Neuron instance NET[0].L[2].N[1];
L7 (DDX7,REF) 1.0;
JC7(DDX7,REF)

+9.147703e-10*V(OUT4,REF)+5.598127e-10*V(OUT5,REF);
EC7(IN7,REF)

+6.116778e-01*V(OUT4,REF)-2.250382e-02*V(OUT5,REF)
-1.391824e-02-V(L7);

NeuronType1_7(IN7,OUT7,REF)
1.732572e+00, 2.478904e-10, 1.471256e-21;

c:R7(OUT7,REF) Rlarge;
JC10(T1,REF) -8.017604e-02+5.439718e+00*V(OUT7,REF);

c: Neuron instance NET[0].L[2].N[2];
L8 (DDX8,REF) 1.0;
JC8(DDX8,REF)

-5.037256e-11*V(OUT4,REF)-2.056628e-10*V(OUT5,REF);
EC8(IN8,REF)

+1.891435e+00*V(OUT4,REF)-8.019724e-01*V(OUT5,REF)
+2.601973e-01-V(L8);

NeuronType1_8(IN8,OUT8,REF)
1.894981e+00, 1.096576e-09, 5.602905e-20;

c:R8(OUT8,REF) Rlarge;

C.2. STANDARD SPICE INPUT DECK EXAMPLE 151

JC11(T2,REF) 2.267318e-01-2.024442e-01*V(OUT8,REF);

END; /* End of Pstar Thesis0 model */

C.2 Standard SPICE Input Deck Example

* Non-quasistatic SPICE subcircuits for 1 networks, *
* written by automatic behavioural model generator. *

* This file defines 1 neural networks:
* .SUBCKT NET0 1 2 3 999 with 3 independent terminal currents
*
* TEMP = 2.7000000000000000E+01 CtoK = 2.7314999999999997E+02
* BOLTZ = 1.3806225999999997E-23 (Boltzmann constant k)
* CHARGE = 1.6021917999999999E-19 (Elementary charge q)
* => T = 3.0014999999999997E+02 Vt = 2.5864186384551461E-02

* N must equal q/(kT) == 1/Vt at YOUR simulation temperature TEMP!!!
.MODEL DNEURON D (IS= 1.0E-03 IBV= 0.0 CJO= 0.0 N= 3.8663501149113841E+01)
* Re-generate SUBCKTs for any different temperatures.
* Also, ideal diode behaviour is assumed at all current levels! =>
* Make some adaptations for your simulator, if needed. The IS value
* can be arbitrarily selected for numerical robustness: it drops
* out of the mathematical relations, but it affects error control.
* Cadence Spectre has an IMAX parameter that should be made large.

.SUBCKT NET0L1N0 1 2 999
* Neuron instance NET[0].L[1].N[0]
R1 1 999 1.0
E1 4 999 1 999 1.0
V1 4 5 0.0
E10 10 999 5 999 9.3843029994013438E-01
D10 10 15 DNEURON
V10 15 999 0.0
E20 20 999 5 999 -9.3843029994013438E-01
D20 20 25 DNEURON
V20 25 999 0.0
F30 999 30 V10 8.6725011215163601E-01
F35 999 30 V20 1.3274988784836392E-01
D30 30 999 DNEURON
F40 999 40 V10 1.3274988784836392E-01
F45 999 40 V20 8.6725011215163601E-01
D40 40 999 DNEURON
G5 5 999 30 40 5.3280462068615719E-01
H50 50 999 V1 1.0
L50 50 2 6.3577589506364056E-10
R50 2 999 1.0
C50 2 999 1.0861375379500291E-11
.ENDS

152 APPENDIX C. EXAMPLES OF GENERATED MODELS

.SUBCKT NET0L1N1 1 2 999
* Neuron instance NET[0].L[1].N[1]
R1 1 999 1.0
E1 4 999 1 999 1.0
V1 4 5 0.0
E10 10 999 5 999 1.0636136179961743E+00
D10 10 15 DNEURON
V10 15 999 0.0
E20 20 999 5 999 -1.0636136179961743E+00
D20 20 25 DNEURON
V20 25 999 0.0
F30 999 30 V10 8.9352149294460403E-01
F35 999 30 V20 1.0647850705539598E-01
D30 30 999 DNEURON
F40 999 40 V10 1.0647850705539598E-01
F45 999 40 V20 8.9352149294460403E-01
D40 40 999 DNEURON
G5 5 999 30 40 4.7009552297947205E-01
H50 50 999 V1 1.0
L50 50 2 9.0677037473784523E-10
R50 2 999 1.0
C50 2 999 5.6403157684469542E-11
.ENDS

.SUBCKT NET0L2N0 1 2 999
* Neuron instance NET[0].L[2].N[0]
R1 1 999 1.0
E1 4 999 1 999 1.0
V1 4 5 0.0
E10 10 999 5 999 1.7099305663270813E+00
D10 10 15 DNEURON
V10 15 999 0.0
E20 20 999 5 999 -1.7099305663270813E+00
D20 20 25 DNEURON
V20 25 999 0.0
F30 999 30 V10 9.6831951188735381E-01
F35 999 30 V20 3.1680488112646179E-02
D30 30 999 DNEURON
F40 999 40 V10 3.1680488112646179E-02
F45 999 40 V20 9.6831951188735381E-01
D40 40 999 DNEURON
G5 5 999 30 40 2.9240953395785913E-01
H50 50 999 V1 1.0
L50 50 2 7.2533448996746825E-10
R50 2 999 1.0
C50 2 999 4.5861006433956426E-11
.ENDS

.SUBCKT NET0L2N1 1 2 999
* Neuron instance NET[0].L[2].N[1]
R1 1 999 1.0
E1 4 999 1 999 1.0
V1 4 5 0.0

C.2. STANDARD SPICE INPUT DECK EXAMPLE 153

E10 10 999 5 999 1.5009030008888708E+00
D10 10 15 DNEURON
V10 15 999 0.0
E20 20 999 5 999 -1.5009030008888708E+00
D20 20 25 DNEURON
V20 25 999 0.0
F30 999 30 V10 9.5265564929569439E-01
F35 999 30 V20 4.7344350704305657E-02
D30 30 999 DNEURON
F40 999 40 V10 4.7344350704305657E-02
F45 999 40 V20 9.5265564929569439E-01
D40 40 999 DNEURON
G5 5 999 30 40 3.3313278719803212E-01
H50 50 999 V1 1.0
L50 50 2 2.4789035420970444E-10
R50 2 999 1.0
C50 2 999 5.9351066440511015E-12
.ENDS

.SUBCKT NET0L2N2 1 2 999
* Neuron instance NET[0].L[2].N[2]
R1 1 999 1.0
E1 4 999 1 999 1.0
V1 4 5 0.0
E10 10 999 5 999 1.7954759016151536E+00
D10 10 15 DNEURON
V10 15 999 0.0
E20 20 999 5 999 -1.7954759016151536E+00
D20 20 25 DNEURON
V20 25 999 0.0
F30 999 30 V10 9.7316774616780659E-01
F35 999 30 V20 2.6832253832193342E-02
D30 30 999 DNEURON
F40 999 40 V10 2.6832253832193342E-02
F45 999 40 V20 9.7316774616780659E-01
D40 40 999 DNEURON
G5 5 999 30 40 2.7847770028559875E-01
H50 50 999 V1 1.0
L50 50 2 1.0965763466052844E-09
R50 2 999 1.0
C50 2 999 5.1094529090918392E-11
.ENDS

.SUBCKT NET0 1 2 3 999
* Network 0 topology: 3 - 2 - 3
G2 999 11 1 999 -6.7085165083464222E-02
G1 999 10 1 999 1.7905117030211314E-09
G4 999 11 2 999 -4.2712455761636123E-01
G3 999 10 2 999 -1.2583350345102781E-10
G6 999 11 3 999 -7.5493795848363305E-01
G5 999 10 3 999 2.0223116907395013E-09
I11 999 11 4.9586810996633499E-01
L10 10 999 1.0000000000000000E+00

154 APPENDIX C. EXAMPLES OF GENERATED MODELS

G7 999 11 10 999 1.0000000000000000E+00
X11 11 12 999 NET0L1N0
G10 999 14 1 999 1.8958285166932167E-01
G9 999 13 1 999 1.9337487686116938E-09
G12 999 14 2 999 3.4616377160567428E-01
G11 999 13 2 999 1.8842096327712685E-10
G14 999 14 3 999 1.2462426190134208E+00
G13 999 13 3 999 2.6568190323453482E-09
I14 999 14 -2.2660061612223554E-01
L13 13 999 1.0000000000000000E+00
G15 999 14 13 999 1.0000000000000000E+00
X14 14 15 999 NET0L1N1
G18 999 17 12 999 1.4253444817664417E+00
G17 999 16 12 999 2.2027769755558099E-10
G20 999 17 15 999 -1.0759814652523116E+00
G19 999 16 15 999 2.8657725035783068E-10
I17 999 17 3.0517054260507383E-02
L16 16 999 1.0000000000000000E+00
G21 999 17 16 999 1.0000000000000000E+00
X17 17 18 999 NET0L2N0
G24 1 999 18 999 -2.6847994620332258E-01
I18 1 999 -1.2492219829255186E-01
G26 999 20 12 999 6.1167782976390769E-01
G25 999 19 12 999 9.1477032544690288E-10
G28 999 20 15 999 -2.2503817077250656E-02
G27 999 19 15 999 5.5981269686469561E-10
I20 999 20 -1.3918243186941530E-02
L19 19 999 1.0000000000000000E+00
G29 999 20 19 999 1.0000000000000000E+00
X20 20 21 999 NET0L2N1
G32 2 999 21 999 5.4397177239052902E+00
I21 2 999 -8.0176040232393930E-02
G34 999 23 12 999 1.8914346798991264E+00
G33 999 22 12 999 -5.0372564367972412E-11
G36 999 23 15 999 -8.0197243940349203E-01
G35 999 22 15 999 -2.0566284076395966E-10
I23 999 23 2.6019731842095845E-01
L22 22 999 1.0000000000000000E+00
G37 999 23 22 999 1.0000000000000000E+00
X23 23 24 999 NET0L2N2
G40 3 999 24 999 -2.0244416743534960E-01
I24 3 999 2.2673179954870881E-01
.ENDS

C.3 C Code Example

/***
* Static (DC) C-source functions for 1 networks, as *
* written by automatic behavioural model generator. *
***/

double f(double s, double d)

C.3. C CODE EXAMPLE 155

{
return(log(cosh(0.5*d*d*(s+1.0))/cosh(0.5*d*d*(s-1.0)))/(d*d));

}

/* Network 0 topology: 3 - 2 - 3 */
void net0(double in0, double in1, double in2

, double *out0, double *out1, double *out2)
{

double net0l1n0;
double net0l1n1;
double net0l2n0;
double net0l2n1;
double net0l2n2;

/* Neuron instance NET[0].L[1].N[0] */
net0l1n0 =
f(-6.7085165083464222e-02 * in0
-4.2712455761636123e-01 * in1
-7.5493795848363305e-01 * in2
+4.9586810996633499e-01, 1.3699856203187932e+00);

/* Neuron instance NET[0].L[1].N[1] */
net0l1n1 =
f(+1.8958285166932167e-01 * in0
+3.4616377160567428e-01 * in1
+1.2462426190134208e+00 * in2
-2.2660061612223554e-01, 1.4585017092867422e+00);

/* Neuron instance NET[0].L[2].N[0] */
net0l2n0 =
f(+1.4253444817664417e+00 * net0l1n0
-1.0759814652523116e+00 * net0l1n1
+3.0517054260507383e-02, 1.8492866550792397e+00);

*out0 = -1.2492219829255186e-01 -2.6847994620332258e-01 * net0l2n0;

/* Neuron instance NET[0].L[2].N[1] */
net0l2n1 =
f(+6.1167782976390769e-01 * net0l1n0
-2.2503817077250656e-02 * net0l1n1
-1.3918243186941530e-02, 1.7325720769358317e+00);

*out1 = -8.0176040232393930e-02 +5.4397177239052902e+00 * net0l2n1;

/* Neuron instance NET[0].L[2].N[2] */
net0l2n2 =
f(+1.8914346798991264e+00 * net0l1n0
-8.0197243940349203e-01 * net0l1n1
+2.6019731842095845e-01, 1.8949806867697379e+00);

*out2 = 2.2673179954870881e-01 -2.0244416743534960e-01 * net0l2n2;
}

156 APPENDIX C. EXAMPLES OF GENERATED MODELS

C.4 FORTRAN Code Example

C ***
C * Static (DC) FORTRAN source code for 1 networks, *
C * written by automatic behavioural model generator. *
C ***

DOUBLE PRECISION FUNCTION DF(DS, DD)
IMPLICIT DOUBLE PRECISION (D)
DD2 = DD * DD
DF = LOG((EXP(DD2*(DS+1D0)/2D0)

+ + EXP(-DD2*(DS+1D0)/2D0))
+ / (EXP(DD2*(DS-1D0)/2D0)
+ + EXP(-DD2*(DS-1D0)/2D0))
+) / DD2
END

C Network 0 topology: 3 - 2 - 3
SUBROUTINE NET0(DIN0
+ , DIN1
+ , DIN2
+ , DOUT0
+ , DOUT1
+ , DOUT2)

IMPLICIT DOUBLE PRECISION (D)

C Neuron instance NET[0].L[1].N[0]
D1N0 =

+ DF(-6.7085165083464222E-02 * DIN0
+ -4.2712455761636123E-01 * DIN1
+ -7.5493795848363305E-01 * DIN2
+ +4.9586810996633499E-01, 1.3699856203187932E+00)

C Neuron instance NET[0].L[1].N[1]
D1N1 =

+ DF(+1.8958285166932167E-01 * DIN0
+ +3.4616377160567428E-01 * DIN1
+ +1.2462426190134208E+00 * DIN2
+ -2.2660061612223554E-01, 1.4585017092867422E+00)

C Neuron instance NET[0].L[2].N[0]
D2N0 =

+ DF(+1.4253444817664417E+00 * D1N0
+ -1.0759814652523116E+00 * D1N1
+ +3.0517054260507383E-02, 1.8492866550792397E+00)

DOUT0 = -1.2492219829255186E-01-2.6847994620332258E-01 * D2N0

C Neuron instance NET[0].L[2].N[1]
D2N1 =

+ DF(+6.1167782976390769E-01 * D1N0

C.5. MATHEMATICA CODE EXAMPLE 157

+ -2.2503817077250656E-02 * D1N1
+ -1.3918243186941530E-02, 1.7325720769358317E+00)

DOUT1 = -8.0176040232393930E-02+5.4397177239052902E+00 * D2N1

C Neuron instance NET[0].L[2].N[2]
D2N2 =

+ DF(+1.8914346798991264E+00 * D1N0
+ -8.0197243940349203E-01 * D1N1
+ +2.6019731842095845E-01, 1.8949806867697379E+00)

DOUT2 = 2.2673179954870881E-01-2.0244416743534960E-01 * D2N2
END

C.5 Mathematica Code Example

(*** \
* Static (DC) Mathematica models for 1 networks, as * \
* written by automatic behavioural model generator. * \
***)

Clear[f]
f[s_,d_] := 1/d^2 Log [Cosh[d^2 (s+1)/2] / Cosh[d^2 (s-1)/2]]
Clear[x0,x1,x2]

(* Network 0 topology: 3 - 2 - 3 *)

Clear[net0l1n0] (* Neuron instance NET[0].L[1].N[0] *)
net0l1n0[x0_,x1_,x2_] := \
f[-0.6708516508346424 10^-1 x0 \
-0.4271245576163612 10^+0 x1 \
-0.7549379584836331 10^+0 x2 \
+0.4958681099663350 10^+0,+1.3699856203187932 10^+0]

Clear[net0l1n1] (* Neuron instance NET[0].L[1].N[1] *)
net0l1n1[x0_,x1_,x2_] := \
f[+0.1895828516693217 10^+0 x0 \
+0.3461637716056743 10^+0 x1 \
+1.2462426190134208 10^+0 x2 \
-0.2266006161222355 10^+0,+1.4585017092867422 10^+0]

Clear[net0l2n0] (* Neuron instance NET[0].L[2].N[0] *)
net0l2n0[x0_,x1_,x2_] := \
f[+1.4253444817664417 10^+0 net0l1n0[x0,x1,x2] \
-1.0759814652523116 10^+0 net0l1n1[x0,x1,x2] \
+0.3051705426050739 10^-1,+1.8492866550792397 10^+0]

net0output0[x0_,x1_,x2_] := -0.1249221982925519 10^+0 \
-0.2684799462033226 10^+0 net0l2n0[x0,x1,x2]

Clear[net0l2n1] (* Neuron instance NET[0].L[2].N[1] *)
net0l2n1[x0_,x1_,x2_] := \

158 APPENDIX C. EXAMPLES OF GENERATED MODELS

f[+0.6116778297639077 10^+0 net0l1n0[x0,x1,x2] \
-0.2250381707725066 10^-1 net0l1n1[x0,x1,x2] \
-0.1391824318694153 10^-1,+1.7325720769358317 10^+0]

net0output1[x0_,x1_,x2_] := -0.8017604023239395 10^-1 \
+5.4397177239052902 10^+0 net0l2n1[x0,x1,x2]

Clear[net0l2n2] (* Neuron instance NET[0].L[2].N[2] *)
net0l2n2[x0_,x1_,x2_] := \
f[+1.8914346798991264 10^+0 net0l1n0[x0,x1,x2] \
-0.8019724394034920 10^+0 net0l1n1[x0,x1,x2] \
+0.2601973184209585 10^+0,+1.8949806867697379 10^+0]

net0output2[x0_,x1_,x2_] := +0.2267317995487088 10^+0 \
-0.2024441674353496 10^+0 net0l2n2[x0,x1,x2]

159

Appendix D

Time Domain Extensions

In this appendix, we will slightly generalize the numerical time integration and transient

sensitivity expressions that were previously derived only for the Backward Euler integra-

tion method. The main purpose is to incorporate the trapezoidal integration method,

because the local truncation error of that method is O(h3), with h the size of the time

step, instead of the O(h2) local truncation error of the Backward Euler integration method

[9]. For sufficiently small time steps, the trapezoidal integration is therefore much more

accurate. As has been mentioned before, both the Backward Euler integration method

and the trapezoidal integration method are numerically very stable—A-stable—methods

[29]. The generalized expressions, as described in the following sections, have also been

implemented in the neural modelling software.

D.1 Generalized Expressions for Time Integration

From Eqs. (3.1) and (3.5) we have

 F(sik, δik) = yik + τ1,ik
dyik
dt + τ2,ik

dzik
dt

zik = dyik
dt

(D.1)

with, for k > 1,

sik =
Nk−1∑
j=1

wijk yj,k−1 − θik +
Nk−1∑
j=1

vijk
dyj,k−1

dt

=
Nk−1∑
j=1

wijk yj,k−1 − θik +
Nk−1∑
j=1

vijk zj,k−1 (D.2)

160 APPENDIX D. TIME DOMAIN EXTENSIONS

The sik are now directly available without differentiation or integration in the expressions

for neuron i in layer k > 1, since the zj,k−1 are “already” obtained through integration in

the preceding layer k − 1. The special case k = 1, where differentiation of network input

signals is needed to obtain the zj,0, is obtained from a separate numerical differentiation.

One may use Eq. (3.16) for this purpose.

Eq. (D.1) may also be written as

 τ2,ik
dzik
dt = F(sik, δik) − yik − τ1,ik zik

dyik
dt = zik

(D.3)

We will apply a discretization according to the scheme

f (x, ẋ, t) = 0 → f

(
ξ1x+ ξ2x

′
,
x− x′

h
, t

)
= 0 (D.4)

where values at previous time points in the discretized expressions are denoted by ac-

cents (
′
). Consequently, a set of implicit nonlinear differential—or differential-algebraic—

equations for variables in the vector x is replaced by a set of implicit nonlinear algebraic

equations from which the unknown new x at a new time point t = t
′

+ h with h > 0

has to be solved for a (known) previous x
′

at time t
′
. Different values for the parameters

ξ1 and ξ2 allow for the selection of a particular integration scheme. The Forward Euler

method is obtained for ξ1 = 0, ξ2 = 1, the Backward Euler method for ξ1 = 1, ξ2 = 0, the

trapezoidal integration method for ξ1 = ξ2 = 1
2 and the second order Adams-Bashforth

method for ξ1 = 3
2 , ξ2 = −1

2 [9]. See also [10] for the Backward Euler method. In all these

cases we have ξ2 ≡ 1 − ξ1. In the following, we will exclude the Forward Euler variant,

since it would lead to a number of special cases that require distinct expressions in order

to avoid division by zero, while it also has rather poor numerical stability properties.

Using Eq. (D.4), we obtain from Eq. (D.3)


τ2,ik

zik − z
′
ik

h = ξ1 (F(sik, δik) − yik − τ1,ik zik)

+ ξ2 (F(s
′
ik, δik) − y

′
ik − τ1,ik z

′
ik)

yik − y
′
ik

h = ξ1 zik + ξ2 z
′
ik

(D.5)

D.1. GENERALIZED EXPRESSIONS FOR TIME INTEGRATION 161

Provided that ξ1 6= 0—hence excluding pure Forward Euler—we can solve for yik and zik

to obtain the explicit expressions



yik =

{
ξ2

1F(sik, δik) + ξ1ξ2F(s
′
ik, δik)

+
[
−ξ1ξ2 + ξ1

τ1,ik

h +
τ2,ik

h2

]
y
′
ik + ξ1 + ξ2

h τ2,ik z
′
ik

}

/

{
ξ2

1 + ξ1
τ1,ik

h +
τ2,ik

h2

}

zik = yik − y
′
ik

hξ1
− ξ2

ξ1
z
′
ik

(D.6)

where division by zero can never occur for ξ1 6= 0, h 6= 0. This equation is a generalization

of Eq. (3.4): for ξ1 = 1 and ξ2 = 0, Eq. (D.6) reduces to Eq. (3.4).

162 APPENDIX D. TIME DOMAIN EXTENSIONS

D.2 Generalized Expressions for Transient Sensitivity

The expressions for transient sensitivity are obtained by differentiating Eqs. (D.2) and

(D.6) w.r.t. any (scalar) parameter p (indiscriminate whether p resides in this neuron or

in a preceding layer), which leads to

∂sik
∂p =

Nk−1∑
j=1

[
dwijk

dp yj,k−1 + wijk
∂yj,k−1

∂p

]
− dθik

dp

+
Nk−1∑
j=1

[
dvijk
dp zj,k−1 + vijk

∂zj,k−1

∂p

] (D.7)

which is identical to the first equation of (3.8), and

∂yik
∂p =

{
ξ2

1

[(
∂F
∂p

)
+
(
∂F
∂sik

) (
∂sik
∂p

)]
+ ξ1ξ2

[(
∂F
∂p

)′
+
(
∂F
∂sik

)′ (
∂sik
∂p

)′]
−
[
ξ1

(
∂τ1,ik

∂p

)
+ 1

h

(
∂τ2,ik

∂p

)] (
ξ1zik + ξ2z

′
ik

)
+
[
−ξ1ξ2 + ξ1

τ1,ik

h +
τ2,ik

h2

] (
∂yik
∂p

)′
+ ξ1 + ξ2

h

[(
∂τ2,ik

∂p

)
z
′
ik + τ2,ik

(
∂zik
∂p

)′] }

/

{
ξ2

1 + ξ1
τ1,ik

h +
τ2,ik

h2

}

∂zik
∂p =

(
∂yik
∂p

)
−
(
∂yik
∂p

)′
hξ1

− ξ2
ξ1

(
∂zik
∂p

)′

(D.8)

which generalizes the second and third equation of (3.8).

For any integration scheme, the initial partial derivative values are again, as in Eq. (3.9),

obtained from the forward propagation of the steady state equations

∂sik
∂p

∣∣∣∣
t=0

=
Nk−1∑
j=1

[
dwijk

dp
yj,k−1

∣∣∣∣
t=0

+ wijk
∂yj,k−1

∂p

∣∣∣∣
t=0

]
− dθik

dp
∂yik
∂p

∣∣∣∣
t=0

= ∂F
∂p + ∂F

∂sik
∂sik
∂p

∣∣∣∣
t=0

∂zik
∂p

∣∣∣∣
t=0

= 0

(D.9)

corresponding to dc sensitivity.

D.3. TRAPEZOIDAL VERSUS BACKWARD EULER INTEGRATION 163

D.3 Trapezoidal versus Backward Euler Integration

To give an intuitive impression about the accuracy of the Backward Euler method and the

trapezoidal integration method for relatively large time steps, it is instructive to consider

a concrete example, for instance the numerical time integration of the differential equa-

tion ẋ = 2π sin(2πt) with x(0) = −1, to obtain an approximation of the exact solution

x(t) = − cos(2πt). Figs. D.1 and D.2 show a few typical results for the Backward Euler

method and the trapezoidal integration method, respectively. Similarly, Figs. D.3 and D.4

show results for the numerical time integration of the differential equation ẋ = 2π cos(2πt)

with x(0) = 0, to obtain an approximation of the exact solution x(t) = sin(2πt). Clearly,

the trapezoidal integration method offers a significantly higher accuracy in these exam-

ples. It is also apparent from the results of Backward Euler integration, that the starting

point for the integration of a periodic function can have marked qualitative effects on the

approximation errors.

164 APPENDIX D. TIME DOMAIN EXTENSIONS

0.5 1 1.5 2

-1

-0.5

0.5

1

Figure D.1: The exact solution x(t) = − cos(2πt) (solid line) of ẋ = 2π sin(2πt),
x(0) = −1, t ∈ [0, 2], compared to Backward Euler integration results
using 20 (large dots) and 40 (small dots) equal time steps, respectively.
The scaled source function sin(2πt) is also shown (dashed).

0.5 1 1.5 2

-1

-0.5

0.5

1

Figure D.2: The exact solution x(t) = − cos(2πt) (solid line) of ẋ = 2π sin(2πt),
x(0) = −1, t ∈ [0, 2], compared to trapezoidal integration results using
20 (large dots) and 40 (small dots) equal time steps, respectively. The
scaled source function sin(2πt) is also shown (dashed).

D.3. TRAPEZOIDAL VERSUS BACKWARD EULER INTEGRATION 165

0.5 1 1.5 2

-1

-0.5

0.5

1

Figure D.3: The exact solution x(t) = sin(2πt) (solid line) of ẋ = 2π cos(2πt), x(0) =
0, t ∈ [0, 2], compared to Backward Euler integration results using 20
(large dots) and 40 (small dots) equal time steps, respectively. The
scaled source function cos(2πt) is also shown (dashed).

0.5 1 1.5 2

-1

-0.5

0.5

1

Figure D.4: The exact solution x(t) = sin(2πt) (solid line) of ẋ = 2π cos(2πt), x(0) =
0, t ∈ [0, 2], compared to trapezoidal integration results using 20 (large
dots) and 40 (small dots) equal time steps, respectively. The scaled
source function cos(2πt) is also shown (dashed).

166 APPENDIX D. TIME DOMAIN EXTENSIONS

BIBLIOGRAPHY 167

Bibliography

[1] S.-I. Amari, “Mathematical Foundations of Neurocomputing,” Proc. IEEE, Vol. 78,

pp. 1443-1463, Sep. 1990.

[2] J. A. Anderson and E. Rosenfeld, Eds., Neurocomputing: Foundations of Research.

Cambridge, MA: MIT Press, 1988.

[3] G. Berthiau, F. Durbin, J. Haussy and P. Siarry, “An Association of Simulated An-

nealing and Electrical Simulator SPICE-PAC for Learning of Analog Neural Net-

works,” Proc. EDAC-1993, pp. 254-259

[4] E. K. Blum and L. K. Li, “Approximation Theory and Feedforward Networks,” Neural

Networks, Vol. 4, pp. 511-515, 1991.

[5] G. K. Boray and M. D. Srinath, “Conjugate Gradient Techniques for Adaptive Fil-

tering,” IEEE Trans. Circuits Syst.-I, Vol. 39, pp. 1-10, Jan. 1992.

[6] R. K. Brayton, G. D. Hachtel, C. T. McMullen and A. L. Sangiovanni-Vincentelli,

Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers,

1984.

[7] J. J. Buckley and Y. Hayashi, “Fuzzy input-output controllers are universal approxi-

mators,” Fuzzy Sets and Systems, Vol. 58, pp. 273-278, Sep. 1993.

[8] G. Casinovi and A. Sangiovanni-Vincentelli, “A Macromodeling Algorithm for Analog

Circuits,” IEEE Trans. CAD, Vol. 10, pp. 150-160, Feb. 1991.

[9] L. O. Chua and P.-M. Lin, Computer-Aided Analysis of Electronic Circuits. Prentice-

Hall, 1975.

[10] L. O. Chua, C. A. Desoer and E. S. Kuh, Linear and Nonlinear Circuits. McGraw-Hill,

1987.

[11] W. M. Coughran, E. Grosse and D. J. Rose, “Variation Diminishing Splines in Sim-

ulation,” SIAM J. Sci. Stat. Comput., vol. 7, pp. 696-705, Apr. 1986.

168 BIBLIOGRAPHY

[12] J. J. Ebers and J. L. Moll, “Large-Signal Behaviour of Junction Transistors,” Proc.

I.R.E., vol. 42, pp. 1761-1772, Dec. 1954.

[13] Pstar User Guide, version 1.10, Internal Philips document from Philips Electronic

Design & Tools, Analogue Simulation Support Centre, Jan. 1992.

[14] Pstar Reference Manual, version 1.10, Internal Philips document from Philips Elec-

tronic Design & Tools, Analogue Simulation Support Centre, Apr. 1992.

[15] F. Goodenough, “Mixed-Signal Simulation Searches for Answers,” Electronic Design,

pp. 37-50, Nov. 12, 1992.

[16] R. Fletcher, Practical Methods of Optimization. Vols. 1 and 2, Wiley & Sons, 1980.

[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes

in C., Cambridge University Press, 1992.

[18] P. Friedel and D. Zwierski, Introduction to Neural Networks. (Introduction aux

Reséaux de Neurones.) LEP Technical Report C 91 503, December 1991.

[19] K.-I. Funahashi, “On the Approximate Realization of Continuous Mappings by Neural

Networks,” Neural Networks, Vol. 2, pp. 183-192, 1989.

[20] K.-I. Funahashi and Y. Nakamura, “Approximation of Dynamical Systems by Con-

tinuous Time Recurrent Neural Networks,” Neural Networks, Vol. 6, pp. 801-806,

1993.

[21] H. C. de Graaf and F. M. Klaassen, Compact Transistor Modelling for Circuit Design.

Springer-Verlag, 1990.

[22] D. Hammerstrom, “Neural networks at work,” IEEE Spectrum, pp. 26-32, June 1993.

[23] K. Hornik, M. Stinchcombe and H. White, “Multilayer Feedforward Networks are

Universal Approximators,” Neural Networks, Vol. 2, pp. 359-366, 1989.

[24] K. Hornik, “Approximation Capabilities of Multilayer Feedforward Networks,” Neural

Networks, Vol. 4, pp. 251-257, 1991.

[25] D. R. Hush and B. G. Horne, “Progress in Supervised Neural Networks,” IEEE Sign.

Proc. Mag., pp. 8-39, Jan. 1993.

[26] Y. Ito, “Approximation of Functions on a Compact Set by Finite Sums of a Sigmoid

Function Without Scaling,” Neural Networks, Vol. 4, pp. 817-826, 1991.

BIBLIOGRAPHY 169

[27] Y. Ito, “Approximation of Continuous Functions on Rd by Linear Combinations of

Shifted Rotations of a Sigmoid Function With and Without Scaling,” Neural Net-

works, Vol. 5, pp. 105-115, 1992.

[28] J.-S. R. Jang, “Self-Learning Fuzzy Controllers Based on Temporal Back Propaga-

tion,” IEEE Trans. Neural Networks, Vol. 3, pp. 714-723, Sep. 1992.

[29] D. R. Kincaid and E. W. Cheney, Numerical Analysis: Mathematics of Scientific

Computing. Books/Cole Publishing Company, 1991.

[30] D. Kleinfeld, “Sequential state generation by model neural networks,” Proc. Natl.

Acad. Sci. USA, Vol. 83, pp. 9469-9473, 1986.

[31] G. J. Klir, Introduction to the methodology of switching circuits. Van Nostrand Com-

pany, 1972.

[32] B. Kosko, Neural Networks and Fuzzy Systems. Prentice-Hall, 1992.

[33] V. Y. Kreinovich, “Arbitrary Nonlinearity Suffices to Represent All Functions by

Neural Networks: A Theorem,” Neural Networks, Vol. 4, pp. 381-383, 1991.

[34] M. Leshno, V. Y. Lin, A. Pinkus and S. Schocken, “Multilayer Feedforward Networks

With a Nonpolynomial Activation Function Can Approximate Any Function,” Neural

Networks, Vol. 6, pp. 861-867, 1993.

[35] Ph. Lindorfer and C. Bulucea, “Modeling of VLSI MOSFET Characteristics Using

Neural Networks,” Proc. of SISDEP 5, Sep. 1993, pp. 33-36.

[36] R. P. Lippmann, “An Introduction to Computing with Neural Nets,” IEEE ASSP

Mag., pp. 4-22, Apr. 1987.

[37] C. A. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley, 1989.

[38] P. B. L. Meijer, “Table Models for Device Modelling,” Proc. Int. Symp. on Circuits

and Syst., June 1988, Espoo, Finland, pp. 2593-2596.

[39] P. B. L. Meijer, “Fast and Smooth Highly Nonlinear Table Models for Device Mod-

eling,” IEEE Trans. Circuits Syst., Vol. 37, pp. 335-346, Mar. 1990.

[40] K. S. Narendra, K. Parthasarathy, “Gradient Methods for the Optimization of Dy-

namical Systems Containing Neural Networks,” IEEE Trans. Neural Networks, Vol.

2, pp. 252-262, Mar. 1991.

170 BIBLIOGRAPHY

[41] O. Nerrand, P. Roussel-Ragot, L. Personnaz and G. Dreyfus, “Neural Networks and

Nonlinear Adaptive Filtering: Unifying Concepts and New Algorithms,” Neural Com-

putation, Vol. 5, pp. 165-199, Mar. 1993.

[42] R. Hecht-Nielsen, “Nearest matched filter classification of spatio-temporal patterns,”

Applied Optics, Vol. 26, pp. 1892-1899, May 1987.

[43] P. Ojala, J, Saarinen, P. Elo and K. Kaski, “Novel technology independent neural

network approach on device modelling interface,” IEE Proc. - Circuits Devices Syst.,

Vol. 142, pp. 74-82, Feb. 1995.

[44] D. E. Rumelhart and J. L. McClelland, Eds., Parallel Distributed Processing, Ex-

plorations in the Microstructure of Cognition. Vols. 1 and 2. Cambridge, MA: MIT

Press, 1986.

[45] F. M. A. Salam, Y. Wang and M.-R. Choi, “On the Analysis of Dynamic Feedback

Neural Nets,” IEEE Trans. Circuits Syst., Vol. 38, pp. 196-201, Feb. 1991.

[46] H. Sompolinsky and I. Kanter, “Temporal Association in Asymmetric Neural Net-

works,” Phys. Rev. Lett., Vol. 57, pp. 2861-2864, 1986.

[47] J. Sztipanovits, “Dynamic Backpropagation Algorithm for Neural Network Controlled

Resonator-Bank Architecture,” IEEE Trans. Circuits Syst.-II, Vol. 39, pp. 99-108,

Feb. 1992.

[48] Y. P. Tsividis, The MOS Transistor. McGraw-Hill, 1988.

[49] B. de Vries and J. C. Principe, “The Gamma Model — A New Neural Model for

Temporal Processing,” Neural Networks, Vol. 5, pp. 565-576, 1992.

[50] P. J. Werbos, “Backpropagation Through Time: What It Does and How to Do it,”

Proc. IEEE, Vol. 78, pp. 1550-1560, Oct. 1990.

[51] B. Widrow and M. E. Lehr, “30 Years of Adaptive Neural Networks: Perceptron,

Madaline, and Backpropagation,” Proc. IEEE, Vol. 78, pp. 1415-1442, Sep. 1990.

[52] C. Woodford, Solving Linear and Non-Linear Equations. Ellis Horwood, 1992.

SUMMARY 171

Summary

This thesis describes the main theoretical principles underlying new automatic modelling

methods, generalizing concepts that originate from theories concerning artificial neural

networks. The new approach allows for the generation of (macro-)models for highly non-

linear, dynamic and multidimensional systems, in particular electronic components and

(sub)circuits. Such models can subsequently be applied in analogue simulations. The pur-

pose of this is twofold. To begin with, it can help to significantly reduce the time needed

to arrive at a sufficiently accurate simulation model for a new basic component—such as

a transistor, in cases where a manual, physics-based, construction of a good simulation

model would be extremely time-consuming. Secondly, a transistor-level description of a

(sub)circuit may be replaced by a much simpler macromodel, in order to obtain a major

reduction of the overall simulation time.

Basically, the thesis covers the problem of constructing an efficient, accurate and numeri-

cally robust model, starting from behavioural data as obtained from measurements and/or

simulations. To achieve this goal, the standard backpropagation theory for static feedfor-

ward neural networks has been extended to include continuous dynamic effects like, for

instance, delays and phase shifts. This is necessary for modelling the high-frequency be-

haviour of electronic components and circuits. From a mathematical viewpoint, a neural

network is now no longer a complicated nonlinear multidimensional function, but a system

of nonlinear differential equations, for which one tries to tune the parameters in such a

way that a good approximation of some specified behaviour is obtained.

Based on theory and algorithms, an experimental software implementation has been made,

which can be used to train neural networks on a combination of time domain and frequency

domain data. Subsequently, analogue behavioural models and equivalent electronic circuits

can be generated for use in analogue circuit simulators like Pstar (from Philips), SPICE

(University of California at Berkeley) and Spectre (from Cadence). The thesis contains a

number of real-life examples which demonstrate the practical feasibility and applicability

of the new methods.

172 SUMMARY

SAMENVATTING 173

Samenvatting

Dit proefschrift beschrijft de belangrijkste theoretische principes achter nieuwe automa-

tische modelleringsmethoden die een uitbreiding vormen op concepten afkomstig uit theo-

rieën betreffende kunstmatige neurale netwerken. De nieuwe aanpak biedt mogelijkheden

om (macro)modellen te genereren voor sterk niet-lineaire, dynamische en meerdimension-

ale systemen, in het bijzonder electronische componenten en (deel)circuits. Zulke mod-

ellen kunnen vervolgens gebruikt worden in analoge simulaties. Dit dient een tweeledig

doel. Ten eerste kan het helpen bij het aanzienlijk reduceren van de tijd die nodig is

om tot een voldoend nauwkeurig simulatiemodel van een nieuwe basiscomponent—zoals

een transistor—te komen, in gevallen waar het handmatig vanuit fysische kennis opstellen

van een goed simulatiemodel zeer tijdrovend zou zijn. Ten tweede kan een beschrijving,

op transistor-niveau, van een (deel)circuit worden vervangen door een veel eenvoudiger

macromodel, om langs deze weg een drastische verkorting van de totale simulatietijd te

verkrijgen.

In essentie behandelt het proefschrift het probleem van het maken van een efficient,

nauwkeurig en numeriek robuust model vanuit gedragsgegevens zoals verkregen uit metin-

gen en/of simulaties. Om dit doel te bereiken is de standaard backpropagation theorie

voor statische “feedforward” neurale netwerken zodanig uitgebreid dat ook de continue dy-

namische effekten van bijvoorbeeld vertragingen en fasedraaiingen in rekening kunnen wor-

den gebracht. Dit is noodzakelijk voor het kunnen modelleren van het hoogfrequent gedrag

van electronische componenten en circuits. Wiskundig gezien is een neuraal netwerk nu

niet langer een ingewikkelde niet-lineaire meerdimensionale funktie maar een stelsel niet-

lineaire differentiaalvergelijkingen, waarvan getracht wordt de parameters zo te bepalen

dat een goede benadering van een gespecificeerd gedrag wordt verkregen.

Op grond van theorie en algoritmen is een experimentele software- implementatie gemaakt,

waarmee neurale netwerken kunnen worden getraind op een combinatie van tijd-domein

en/of klein-signaal frequentie-domein gegevens. Naderhand kunnen geheel automatisch

analoge gedragsmodellen en equivalente electronische circuits worden gegenereerd voor

gebruik in analoge circuit-simulatoren zoals Pstar (van Philips), SPICE (van de universiteit

van Californië te Berkeley) en Spectre (van Cadence). Het proefschrift bevat een aantal

aan de praktijk ontleende voorbeelden die de praktische haalbaarheid en toepasbaarheid

van de nieuwe methoden aantonen.

174 SAMENVATTING

CURRICULUM VITAE 175

Curriculum Vitae

Peter Meijer was born on June 5, 1961 in Sliedrecht, The Netherlands. In August 1985

he received the M.Sc. in Physics from the Delft University of Technology. His master’s

project was performed with the Solid State Physics group of the university on the subject

of non-equilibrium superconductivity and sub-micron photolithography.

Since September 1, 1985 he has been working as a research scientist at the Philips Re-

search Laboratories in Eindhoven, The Netherlands, on black-box modelling techniques

for analogue circuit simulation.

In his spare time, and with subsequent support from Philips, he developed a prototype

image-to-sound conversion system, possibly as a step towards the development of a vision

substitution device for the blind.

